Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (NRF-2018R1A5A2023127 and 2020R1F1A1075835 to J.C. and NRF-2018R1D1A1B07050975 and 2021R1F1A1063558 to H.-C.A.), Korea.
References
- Ashburn, T. T. and Thor, K. B. (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673-683. https://doi.org/10.1038/nrd1468
- Bogoyevitch, M. A. (2006) The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. BioEssays 28, 923-934. https://doi.org/10.1002/bies.20458
- Boraschi, D., Cifone, M. G., Falk, W., Flad, H., Tagliabue, A. and Martin, M. (1998) Cytokines in inflammation. Eur. Cytokine Netw. 9, 205-212.
- Brough, D. and Rothwell, N. J. (2007) Caspase-1-dependent processing of pro-interleukin-1β is cytosolic and precedes cell death. J. Cell Sci. 120, 772-781. https://doi.org/10.1242/jcs.03377
- Bui, B. P., Oh, Y., Lee, H. and Cho, J. (2020) Inhibition of inflammatory mediators and cell migration by 1,2,3,4-tetrahydroquinoline derivatives in LPS-stimulated BV2 microglial cells via suppression of NF-κB and JNK pathway. Int. Immunopharmacol. 80, 106231.
- Carson, M. J., Thrash, J. C. and Walter, B. (2006) The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin. Neurosci. Res. 6, 237-245. https://doi.org/10.1016/j.cnr.2006.09.004
- Choi, W. S., Abel, G., Klintworth, H., Flavell, R. A. and Xia, Z. (2010) JNK3 mediates paraquat- and rotenone-induced dopaminergic neuron death. J. Neuropathol. Exp. Neurol. 69, 511-520. https://doi.org/10.1097/NEN.0b013e3181db8100
- Cui, J., Zhang, M., Zhang, Y. Q. and Xu, Z. H. (2007) JNK pathway: diseases and therapeutic potential. Acta Pharmacol. Sin. 28, 601-608. https://doi.org/10.1111/j.1745-7254.2007.00579.x
- Dawson, T. M. and Dawson, V. L. (2018) Nitric oxide signaling in neurodegeneration and cell death. Adv. Pharmacol. 82, 57-83. https://doi.org/10.1016/bs.apha.2017.09.003
- Deng, Z., Yuan, C., Yang, J., Peng, Y., Wang, W., Wang, Y. and Gao, W. (2018) Behavioral defects induced by chronic social defeat stress are protected by Momordica charantia polysaccharides via attenuation of JNK3/PI3K/AKT neuroinflammatory pathway. Ann. Transl. Med. 7, 6.
- DiSabato, D. J., Quan, N. and Godbout, J. P. (2016) Neuroinflammation: the devil is in the details. J. Neurochem. 139 Suppl 2, 136-153. https://doi.org/10.1111/jnc.13607
- Do, H. T. T., Bui, B. P., Sim, S., Jung, J.-K., Lee, H. and Cho, J. (2020) Anti-inflammatory and anti-migratory activities of isoquinoline-1-carboxamide derivatives in LPS-treated BV2 microglial cells via inhibition of MAPKs/NF-κB pathway. Int. J. Mol. Sci. 21, 2319.
- Dou, X., Huang, H., Li, Y., Jiang, L., Wang, Y., Jin, H., Jiao, N., Zhang, L., Zhang, L. and Liu, Z. (2019) Multistage screening reveals 3-substituted indolin-2-one derivatives as novel and isoform-selective c-Jun N-terminal Kinase 3 (JNK3) inhibitors: implications to drug discovery for potential treatment of neurodegenerative diseases. J. Med. Chem. 62, 6645-6664. https://doi.org/10.1021/acs.jmedchem.9b00537
- Dou, Y., Wu, H. J., Li, H. Q., Qin, S., Wang, Y. E., Li, J., Lou, H. F., Chen, Z., Li, X. M., Luo, Q. M. and Duan, S. (2012) Microglial migration mediated by ATP-induced ATP release from lysosomes. Cell Res. 22, 1022-1033. https://doi.org/10.1038/cr.2012.10
- El Khoury, J. (2010) Neurodegeneration and the neuroimmune system. Nat. Med. 16, 1369-1370. https://doi.org/10.1038/nm1210-1369
- Gourmaud, S., Paquet, C., Dumurgier, J., Pace, C., Bouras, C., Gray, F., Laplanche, J.-L., Meurs, E. F., Mouton-Liger, F. and Hugon, J. (2015) Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline. J. Psychiatry Neurosci. 40, 151-161. https://doi.org/10.1503/jpn.140062
- Gupta, S., Barrett, T., Whitmarsh, A. J., Cavanagh, J., Sluss, H. K., Derijard, B. and Davis, R. J. (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760-2770. https://doi.org/10.1002/j.1460-2075.1996.tb00636.x
- Haddad, J. J. (2002) Cytokines and related receptor-mediated signaling pathways. Biochem. Biophys. Res. Commun. 297, 700-713. https://doi.org/10.1016/S0006-291X(02)02287-8
- Heneka, M. T. and Feinstein, D. L. (2001) Expression and function of inducible nitric oxide synthase in neurons. J. Neuroimmunol. 114, 8-18. https://doi.org/10.1016/S0165-5728(01)00246-6
- Huang, B.-R., Chang, P.-C., Yeh, W.-L., Lee, C.-H., Tsai, C.-F., Lin, C., Lin, H.-Y., Liu, Y.-S., Wu, C. Y.-J., Ko, P.-Y., Huang, S.-S., Hsu, H.-C. and Lu, D.-Y. (2014) Anti-neuroinflammatory effects of the calcium channel blocker nicardipine on microglial cells: implications for neuroprotection. PLoS ONE 9, e91167.
- Jourdan, J.-P., Bureau, R., Rochais, C. and Dallemagne, P. (2020) Drug repositioning: a brief overview. J. Pharm. Pharmacol. 72, 1145-1151. https://doi.org/10.1111/jphp.13273
- Kempuraj, D., Thangavel, R., Natteru, P. A., Selvakumar, G. P., Saeed, D., Zahoor, H., Zaheer, S., Iyer, S. S. and Zaheer, A. (2016) Neuroinflammation induces neurodegeneration. J. Neurol. Neurosurg. Spine 1, 1003.
- Kettenmann, H., Hanisch, U.-K., Noda, M. and Verkhratsky, A. (2011) Physiology of microglia. Physiol. Rev. 91, 461-553. https://doi.org/10.1152/physrev.00011.2010
- Kloss, C. U. A., Bohatschek, M., Kreutzberg, G. W. and Raivich, G. (2001) Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp. Neurol. 168, 32-46. https://doi.org/10.1006/exnr.2000.7575
- Lepiarz, I. and Olajide, O. (2019) The human microglia (HMC-3) as a cellular model of neuroinflammation. IBRO Rep. 6, S92.
- Li, Y., Hu, X., Liu, Y., Bao, Y. and An, L. (2009) Nimodipine protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. Neuropharmacology 56, 580-589. https://doi.org/10.1016/j.neuropharm.2008.10.016
- Liang, X., Wu, L., Wang, Q., Hand, T., Bilak, M., McCullough, L. and Andreasson, K. (2007) Function of COX-2 and prostaglandins in neurological disease. J. Mol. Neurosci. 33, 94-99. https://doi.org/10.1007/s12031-007-0058-8
- Lopez-Castejon, G. and Brough, D. (2011) Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 22, 189-195. https://doi.org/10.1016/j.cytogfr.2011.10.001
- Nagai, A., Nakagawa, E., Hatori, K., Choi, H. B., McLarnon, J. G., Lee, M. A. and Kim, S. U. (2001) Generation and characterization of immortalized human microglial cell lines: expression of cytokines and chemokines. Neurobiol. Dis. 8, 1057-1068. https://doi.org/10.1006/nbdi.2001.0437
- Nguyen, P. L., Bui, B. P., Duong, M. T. H., Lee, K., Ahn, H. C. and Cho, J. (2021a) Suppression of LPS-induced inflammation and cell migration by azelastine through inhibition of JNK/NF-κB pathway in BV2 microglial cells. Int. J. Mol. Sci. 22, 9061.
- Nguyen, P. L., Bui, B. P., Lee, H. and Cho, J. (2021b) A novel 1,8-naphthyridine-2-carboxamide derivative attenuates inflammatory responses and cell migration in LPS-treated BV2 cells via the suppression of ROS generation and TLR4/Myd88/NF-κB signaling pathway. Int. J. Mol. Sci. 22, 2527.
- Okun, E., Griffioen, K. J., Lathia, J. D., Tang, S.-C., Mattson, M. P. and Arumugam, T. V. (2009) Toll-like receptors in neurodegeneration. Brain Res. Rev. 59, 278-292. https://doi.org/10.1016/j.brainresrev.2008.09.001
- Pan, J., Wang, G., Yang, H. Q., Hong, Z., Xiao, Q., Ren, R. J., Zhou, H. Y., Bai, L. and Chen, S. D. (2007) K252a prevents nigral dopaminergic cell death induced by 6-hydroxydopamine through inhibition of both mixed-lineage kinase 3/c-Jun NH2-terminal kinase 3 (JNK3) and apoptosis-inducing kinase 1/JNK3 signaling pathways. Mol. Pharmacol. 72, 1607-1618. https://doi.org/10.1124/mol.107.038463
- Park, S. E., Sapkota, K., Kim, S., Kim, H. and Kim, S. J. (2011) Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br. J. Pharmacol. 164, 1008-1025. https://doi.org/10.1111/j.1476-5381.2011.01389.x
- Prakash, P., Jethava, K. P., Korte, N., Izquierdo, P., Favuzzi, E., Rose, I. V. L., Guttenplan, K. A., Manchanda, P., Dutta, S., Rochet, J. C., Fishell, G., Liddelow, S. A., Attwell, D. and Chopra, G. (2021) Monitoring phagocytic uptake of amyloid β into glial cell lysosomes in real time. Chem. Sci. 12, 10901-10918. https://doi.org/10.1039/D1SC03486C
- Rajan, R. K. and Ramanathan, M. (2020) Identification and neuroprotective evaluation of a potential c-Jun N-terminal kinase 3 inhibitor through structure-based virtual screening and in-vitro assay. J. Comput. Aided Mol. Des. 34, 671-682. https://doi.org/10.1007/s10822-020-00297-y
- Resnick, L. and Fennell, M. (2004) Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov. Today 9, 932-939. https://doi.org/10.1016/S1359-6446(04)03251-9
- Saini, R. and Singh, S. (2019) Inducible nitric oxide synthase: an asset to neutrophils. J. Leukoc. Biol. 105, 49-61. https://doi.org/10.1002/JLB.4RU0418-161R
- Salter, M. W. and Stevens, B. (2017) Microglia emerge as central players in brain disease. Nat. Med. 23, 1018-1027. https://doi.org/10.1038/nm.4397
- Shabab, T., Khanabdali, R., Moghadamtousi, S. Z., Kadir, H. A. and Mohan, G. (2017) Neuroinflammation pathways: a general review. Int. J. Neurosci. 127, 624-633. https://doi.org/10.1080/00207454.2016.1212854
- Singh, S. S., Rai, S. N., Birla, H., Zahra, W., Rathore, A. S. and Singh, S. P. (2020) NF-κB-mediated neuroinflammation in Parkinson's disease and potential therapeutic effect of polyphenols. Neurotox. Res. 37, 491-507. https://doi.org/10.1007/s12640-019-00147-2
- Smith, A. M. and Dragunow, M. (2014) The human side of microglia. Trends Neurosci. 37, 125-135. https://doi.org/10.1016/j.tins.2013.12.001
- Soufli, I., Toumi, R., Rafa, H. and Touil-Boukoffa, C. (2016) Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther. 7, 353-360. https://doi.org/10.4292/wjgpt.v7.i3.353
- Tai, C.-H., Yang, Y.-C., Pan, M.-K., Huang, C.-S. and Kuo, C.-C. (2011) Modulation of subthalamic T-type Ca2+ channels remedies locomotor deficits in a rat model of Parkinson disease. J. Clin. Invest. 121, 3289-3305. https://doi.org/10.1172/JCI46482
- Tanaka, H. and Shigenobu, K. (2002) Efonidipine hydrochloride: a dual blocker of L- and T-type Ca(2+) channels. Cardiovasc. Drug Rev. 20, 81-92. https://doi.org/10.1111/j.1527-3466.2002.tb00084.x
- Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461.
- Waetzig, V., Czeloth, K., Hidding, U., Mielke, K., Kanzow, M., Brecht, S., Goetz, M., Lucius, R., Herdegen, T. and Hanisch, U.-K. (2005) c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50, 235-246. https://doi.org/10.1002/glia.20173
- Wang, D., Fei, Z., Luo, S. and Wang, H. (2020) MiR-335-5p inhibits β-Amyloid (Aβ) accumulation to attenuate cognitive deficits through targeting c-jun-N-terminal kinase 3 in Alzheimer's disease. Curr. Neurovasc. Res. 17, 93-101. https://doi.org/10.2174/1567202617666200128141938
- Zhu, X., Castellani, R. J., Takeda, A., Nunomura, A., Atwood, C. S., Perry, G. and Smith, M. A. (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the 'two hit' hypothesis. Mech. Ageing Dev. 123, 39-46. https://doi.org/10.1016/S0047-6374(01)00342-6
- Zulfiqar, Z., Shah, F.A., Shafique, S., Alattar, A., Ali, T., Alvi, A.M., Rashid, S. and Li, S. (2020) Repurposing FDA approved drugs as JNK3 inhibitor for prevention of neuroinflammation induced by MCAO in rats. J. Inflamm. Res. 13, 1185-1205. https://doi.org/10.2147/JIR.S284471