Acknowledgement
This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HP20C0131). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF 2018R1A5A2023127).
References
- Ban, H. S., Kim, B.-K., Lee, H., Kim, H. M., Harmalkar, D., Nam, M., Park, S.-K., Lee, K., Park, J.-T., Kim, I., Lee, K., Hwang, G. S. and Won, M. (2017) The novel hypoxia-inducible factor-1α inhibitor IDF-11774 regulates cancer metabolism, thereby suppressing tumor growth. Cell Death Dis. 8, e2843.
- Barsoum, I. B., Smallwood, C. A., Siemens, D. R. and Graham, C. H. (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74, 665-674.
- Cheli, Y., Giuliano, S., Fenouille, N., Allegra, M., Hofman, V., Hofman, P., Bahadoran, P., Lacour, J., Tartare-Deckert, S., Bertolotto, C. and Ballotti, R. (2012) Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene 31, 2461-2470. https://doi.org/10.1038/onc.2011.425
- D'Aguanno, S., Mallone, F., Marenco, M., Del Bufalo, D. and Moramarco, A. (2021) Hypoxia-dependent drivers of melanoma progression. J. Exp. Clin. Cancer Res. 40, 159.
- Dratkiewicz, E., Simiczyjew, A., Mazurkiewicz, J., Zietek, M., Matkowski, R. and Nowak, D. (2021) Hypoxia and extracellular acidification as drivers of melanoma progression and drug resistance. Cells 10, 862.
- Gonzalez-Ruiz, L., Gonzalez-Moles, M. A., Gonzalez-Ruiz, I., Ruiz-Avila, I. and Ramos-Garcia, P. (2021) Prognostic and clinicopathological significance of CCND1/cyclin D1 upregulation in melanomas: a systematic review and comprehensive meta-analysis. Cancers 13, 1314.
- Kedinger, V., Meulle, A., Zounib, O., Bonnet, M.-E., Gossart, J.-B., Benoit, E., Messmer, M., Shankaranarayanan, P., Behr, J.-P., Erbacher, P. and Bolcato-Bellemin, A. L. (2013) Sticky siRNAs targeting survivin and cyclin B1 exert an antitumoral effect on melanoma subcutaneous xenografts and lung metastases. BMC Cancer 13, 338.
- Kim, H. J., Choi, W. J. and Lee, C. H. (2015) Phosphorylation and reorganization of keratin networks: Implications for carcinogenesis and epithelial mesenchymal transition. Biomol. Ther. (Seoul) 23, 301-312. https://doi.org/10.4062/biomolther.2015.032
- Koch, A., Ebert, E. V., Seitz, T., Dietrich, P., Berneburg, M., Bosserhoff, A. and Hellerbrand, C. (2020) Characterization of glycolysis-related gene expression in malignant melanoma. Pathol. Res. Pract. 216, 152752.
- Li, Y., Patel, S. P., Roszik, J. and Qin, Y. (2018) Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front. Immunol. 9, 1591.
- Liu, A. and Curran, M. A. (2020) Tumor hypermetabolism confers resistance to immunotherapy. Semin. Cancer Biol. 65,155-163. https://doi.org/10.1016/j.semcancer.2020.01.009
- Mahmoud, F., Shields, B., Makhoul, I., Avaritt, N., Wong, H. K., Hutchins, L. F., Shalin, S. and Tackett, A. J. (2017) Immune surveillance in melanoma: from immune attack to melanoma escape and even counterattack. Cancer Biol. Ther. 18, 451-469. https://doi.org/10.1080/15384047.2017.1323596
- Malekan, M., Ebrahimzadeh, M. A. and Sheida, F. (2021) The role of Hypoxia-Inducible Factor-1alpha and its signaling in melanoma. Biomed. Pharmacother. 141, 111873.
- Martinez-Garcia, M. A., Riveiro-Falkenbach, E., Rodriguez-Peralto, J. L., Nagore, E., Martorell-Calatayud, A., Campos-Rodriguez, F., Farre, R., Hernandez Blasco, L., Banuls Roca, J., Chiner Vives, E., Sanchez-de-la-Torre, A., Abad Capa, J., Montserrat, J. M., Almendros, I., Perez-Gil, A., Cabriada Nuno, V., Cano-Pumarega, I., Corral Penafiel, J., Diaz Cambriles, T., Mediano, O., Dalmau Arias, J. and Gozal, D.; Spanish Sleep Network (2017) A prospective multicenter cohort study of cutaneous melanoma: clinical staging and potential associations with HIF-1α and VEGF expressions. Melanoma Res. 27, 558-564. https://doi.org/10.1097/CMR.0000000000000393
- Michaylira, C. Z. and Nakagawa, H. (2006) Hypoxic microenvironment as a cradle for melanoma development and progression. Cancer Biol. Ther. 5, 476-479. https://doi.org/10.4161/cbt.5.5.2749
- Munoz-Sanchez, J. and Chanez-Cardenas, M. E. (2019) The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 39, 556-570. https://doi.org/10.1002/jat.3749
- Nam, M.-W., Kim, C.-W. and Choi, K.-C. (2022) Epithelial-mesenchymal transition-inducing factors involved in the progression of lung cancers. Biomol. Ther. (Seoul) 30, 213-220. https://doi.org/10.4062/biomolther.2021.178
- Nowak-Stepniowska, A., Osuchowska, P. N., Fiedorowicz, H. and Trafny, E. A. (2022) Insight in hypoxia-mimetic agents as potential tools for mesenchymal stem cell priming in regenerative medicine. Stem Cells Int. 2022, 8775591.
- Pearlman, R. L., de Oca, M. K. M., Pal, H. C. and Afaq, F. (2017) Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett. 391, 125-140. https://doi.org/10.1016/j.canlet.2017.01.029
- Pio, R., Ajona, D., Ortiz-Espinosa, S., Mantovani, A. and Lambris, J. D. (2019) Complementing the cancer-immunity cycle. Front. Immunol. 10, 774.
- Rebecca, V. W., Somasundaram, R. and Herlyn, M. (2020) Pre-clinical modeling of cutaneous melanoma. Nat. Commun. 11, 2858.
- Schadendorf, D., van Akkooi, A. C., Berking, C., Griewank, K. G., Gutzmer, R., Hauschild, A., Stang, A., Roesch, A. and Ugurel, S. (2018) Melanoma. Lancet 392, 971-984. https://doi.org/10.1016/S0140-6736(18)31559-9
- Shrayer, D., Bogaars, H., Gersten, D., Hearing, V., Maizel, A. and Wanebo, H. (1994) Nude mouse model to study passive humoral immunotherapy directed against B16 F10 murine melanoma. J. Surg. Oncol. 57, 50-56. https://doi.org/10.1002/jso.2930570114
- Singh, M., Agarwal, S., Agarwal, V., Mall, S., Pancham, P. and Mani, S. (2021) Current theranostic approaches for metastatic cancers through hypoxia-induced exosomal packaged cargo. Life Sci. 286, 120017.
- Tchakarska, G. and Sola, B. (2020) The double dealing of cyclin D1. Cell Cycle 19, 163-178. https://doi.org/10.1080/15384101.2019.1706903
- Tittarelli, A., Navarrete, M., Lizana, M., Hofmann-Vega, F. and Salazar-Onfray, F. (2020) Hypoxic melanoma cells deliver microRNAs to dendritic cells and cytotoxic T lymphocytes through connexin-43 channels. Int. J. Mol. Sci. 21, 7567.
- Van Duijn, A., Willemsen, K. J., Van Uden, N. O., Hoyng, L., Erades, S., Koster, J., Luiten, R. M. and Bakker, W. J. (2022) A secondary role for hypoxia and HIF1 in the regulation of (IFNγ-induced) PD-L1 expression in melanoma. Cancer Immunol. Immunother. 71, 529-540. https://doi.org/10.1007/s00262-021-03007-1
- Vandyck, H. H., Hillen, L. M., Bosisio, F. M., van den Oord, J., Zur Hausen, A. and Winnepenninckx, V. (2021) Rethinking the biology of metastatic melanoma: a holistic approach. Cancer Metastasis Rev. 40, 603-624. https://doi.org/10.1007/s10555-021-09960-8
- Zou, M. Z., Liu, W. L., Li, C. X., Zheng, D. W., Zeng, J. Y., Gao, F., Ye, J. J. and Zhang, X. Z. (2018) A multifunctional biomimetic nanoplatform for relieving hypoxia to enhance chemotherapy and inhibit the PD-1/PD-L1 axis. Small 14, 1801120.