DOI QR코드

DOI QR Code

Prediction Model of Blast Load Acting on a Column Component Under an External Explosion Based on Database

D/B기반 외부폭발에 의해 기둥에 작용하는 폭압이력 예측 모델

  • Sung, Seung-Hun (The 1st Research and Development Institute, Agency for Defense Development) ;
  • Cha, Jeong-min (The 1st Research and Development Institute, Agency for Defense Development)
  • 성승훈 (국방과학연구소 미사일연구원) ;
  • 차정민 (국방과학연구소 미사일연구원)
  • Received : 2022.04.27
  • Accepted : 2022.07.22
  • Published : 2022.08.31

Abstract

A prediction model is proposed for a blast load acting on a column component because of an external explosion. The model can predict the pressure-time histories acting on a column using the fitting curves established from a database composed of finite-element (FE) analysis results. To this end, 70 numerical simulations using the commercial software AUTODYN were performed by changing the column width. To confirm the performance of the proposed model, pressure-time histories estimated from an existing empirical formula and the proposed model were compared based on the FE analysis results. It was verified that the proposed model can more precisely predict the pressure-time histories compared with the existing model.

본 연구에서는 유한요소해석 D/B를 기반으로 보간식을 산출하여 개활지 폭발현상에 의해 기둥에 작용하는 폭압이력을 예측하는 모델을 개발했다. D/B 구성을 위해 7종류 기둥 너비에 대해 총 70회의 유한요소해석을 수행했다. 제안하는 방법의 성능확인을 위해, 기존에 제시된 경험식 기반의 예측식과의 비교연구를 수행했다. 또한, D/B를 구성하는 point 외의 영역에서의 예측 정확도 확인을 위해 유한요소해석 결과와의 비교/검증 연구를 추가로 수행했다. 제안하는 방법은 기존의 경험식 기반 예측식에 비해 유한요소해석 결과와 유사한 결과를 산출함을 확인했다.

Keywords

References

  1. Autodyn, ANSYS (2005) Theory Manual Revision 4.3., Century Dynamics, Concord, CA.
  2. Center, P.D. (2008) Single Degree of Freedom Structural Response Limits for Anti-Terrorism Design, PDC TR-06-08, Omaha, NE: US Army Corps of Engineers.
  3. Dalton, J., Gott, J., Parker, P., McAndrew, M., Bowling, C. (2008) Unified Facilities Criteria: Structures to Resist the Effects of Accidental Explosions(UFC 3-340-02), US Department of Defense, Washington, DC.
  4. Department of the Army (1959) Design of structures to Resist of the Effects of Atomic Weapons: Weapons Effects Data, Army Technical Manual(TM 5-856-1). Washington, DC: Dept. of the Army.
  5. Dobratz, B.M., Crawford, P.C. (1985) LLNL Explosive Handbook, Properties of Chemical Explosives and Explosive Simulants, Rep. No.UCRL-52997. Livermore, CA: Lawrence Livermore National Laboratory.
  6. Dragos, J., Wu, C. (2013) A New Approach to Derive Normalized Pressure Impulse Curves, Int. J. Impact Eng., 62, pp.1~12. https://doi.org/10.1016/j.ijimpeng.2013.05.005
  7. Hou, X., Cao, S., Rong, Q., Zheng, W. (2018) A P-I Diagram Approach for Predicting Failure Modes of RPC One-Way Slabs Subjected to Blast Loading, Int. J. Impact Eng., 120, pp.171~184. https://doi.org/10.1016/j.ijimpeng.2018.06.006
  8. Kinney, G.F., Graham, K.J. (1985) Explosive Shocks in Air, 2nd ed., Springer, New York.
  9. Liu, Y., Yan, J., Huang, F. (2018) Behavior of Reinforced Concrete Beam and Columns Subjected to Blast Loading, Def. Technol., 14(5), pp.550~559. https://doi.org/10.1016/j.dt.2018.07.026
  10. Morison, C.M. (2006) Dynamic Response of Walls and Slabs by Single-Degree-of-Freedom Analysis-a Critical Review and Revision, Int. J. Impact Eng., 32(8), pp.1214~1247. https://doi.org/10.1016/j.ijimpeng.2004.11.008
  11. Nartu, M .K., K um ar, M.K. (2020) Blast Response of Single-Degree-of-Freedom System Including Fluid-Structure Interaction, J. Struct. Eng., 147(1), pp.1~14.
  12. Norris, C.H., Hansen, R.J., Holley, M.J., Biggs, J. M., Namyet, S., Minami, J.K. (1959) Structural Design for Dynamic Loads, McGraw-Hill, New York.
  13. Oswald, C., Bazn, M. (2014) Comparison of SDOF Analysis Results to Test Data for Different Types of Blast Loaded Components, Structures Congress, Boston, Massachusetts, pp.117~130.
  14. Rickman, D.D., Murrell, D.W. (2007) Development of an Improved Methodology for Predicting Airblast Pressure Relief on a Directly Loaded Wall, J. Press. Vessel Technol., 129(1), pp.195~204. https://doi.org/10.1115/1.2409317
  15. Rigby, S.E., Tyas, A., Bennett, T., Fay, S.D., Clarke, S.D., Warren, J.A. (2014) A Numerical Investigation of Blast Loading and Clearing on Small Targets, Int. J. Prot. Struct., 5(3), pp.253~274. https://doi.org/10.1260/2041-4196.5.3.253
  16. Rigby, S.E., Tyas, A., Clarke, S.D., Razaqpur, G. (2017) Approach to Developing Design Charts for Quantifying the Influence of Blast Wave Clearing on Target Deformation, J. Struct. Eng., 143(1), 04016150.
  17. Shin, J., Whittaker, A.S. (2019) Blast-Wave Clearing for Detonations of High Explosives, J. Struct. Eng., 145(7), 04019049.
  18. Smith, P.D., Hetherington, J.G. (1994) Blast and Ballistic Loading of Structures, Oxford, UK: Butterworth-Heinemann.
  19. Sung, S., Chong, J. (2020) A Fast-Running Method for Blast Load Prediction Shielding by a Protective Barrier, Def. Technol., 16(2), pp.308~315. https://doi.org/10.1016/j.dt.2019.07.011
  20. Tyas, A., Warren, J.A., Bennett, T., Fay, S. (2011) Prediction of Clearing Effects in Far-Field Blast Loading of Finite Targets, Shock Waves, 21(2), pp.111~119. https://doi.org/10.1007/s00193-011-0308-0