References
- Autodyn, ANSYS (2005) Theory Manual Revision 4.3., Century Dynamics, Concord, CA.
- Center, P.D. (2008) Single Degree of Freedom Structural Response Limits for Anti-Terrorism Design, PDC TR-06-08, Omaha, NE: US Army Corps of Engineers.
- Dalton, J., Gott, J., Parker, P., McAndrew, M., Bowling, C. (2008) Unified Facilities Criteria: Structures to Resist the Effects of Accidental Explosions(UFC 3-340-02), US Department of Defense, Washington, DC.
- Department of the Army (1959) Design of structures to Resist of the Effects of Atomic Weapons: Weapons Effects Data, Army Technical Manual(TM 5-856-1). Washington, DC: Dept. of the Army.
- Dobratz, B.M., Crawford, P.C. (1985) LLNL Explosive Handbook, Properties of Chemical Explosives and Explosive Simulants, Rep. No.UCRL-52997. Livermore, CA: Lawrence Livermore National Laboratory.
- Dragos, J., Wu, C. (2013) A New Approach to Derive Normalized Pressure Impulse Curves, Int. J. Impact Eng., 62, pp.1~12. https://doi.org/10.1016/j.ijimpeng.2013.05.005
- Hou, X., Cao, S., Rong, Q., Zheng, W. (2018) A P-I Diagram Approach for Predicting Failure Modes of RPC One-Way Slabs Subjected to Blast Loading, Int. J. Impact Eng., 120, pp.171~184. https://doi.org/10.1016/j.ijimpeng.2018.06.006
- Kinney, G.F., Graham, K.J. (1985) Explosive Shocks in Air, 2nd ed., Springer, New York.
- Liu, Y., Yan, J., Huang, F. (2018) Behavior of Reinforced Concrete Beam and Columns Subjected to Blast Loading, Def. Technol., 14(5), pp.550~559. https://doi.org/10.1016/j.dt.2018.07.026
- Morison, C.M. (2006) Dynamic Response of Walls and Slabs by Single-Degree-of-Freedom Analysis-a Critical Review and Revision, Int. J. Impact Eng., 32(8), pp.1214~1247. https://doi.org/10.1016/j.ijimpeng.2004.11.008
- Nartu, M .K., K um ar, M.K. (2020) Blast Response of Single-Degree-of-Freedom System Including Fluid-Structure Interaction, J. Struct. Eng., 147(1), pp.1~14.
- Norris, C.H., Hansen, R.J., Holley, M.J., Biggs, J. M., Namyet, S., Minami, J.K. (1959) Structural Design for Dynamic Loads, McGraw-Hill, New York.
- Oswald, C., Bazn, M. (2014) Comparison of SDOF Analysis Results to Test Data for Different Types of Blast Loaded Components, Structures Congress, Boston, Massachusetts, pp.117~130.
- Rickman, D.D., Murrell, D.W. (2007) Development of an Improved Methodology for Predicting Airblast Pressure Relief on a Directly Loaded Wall, J. Press. Vessel Technol., 129(1), pp.195~204. https://doi.org/10.1115/1.2409317
- Rigby, S.E., Tyas, A., Bennett, T., Fay, S.D., Clarke, S.D., Warren, J.A. (2014) A Numerical Investigation of Blast Loading and Clearing on Small Targets, Int. J. Prot. Struct., 5(3), pp.253~274. https://doi.org/10.1260/2041-4196.5.3.253
- Rigby, S.E., Tyas, A., Clarke, S.D., Razaqpur, G. (2017) Approach to Developing Design Charts for Quantifying the Influence of Blast Wave Clearing on Target Deformation, J. Struct. Eng., 143(1), 04016150.
- Shin, J., Whittaker, A.S. (2019) Blast-Wave Clearing for Detonations of High Explosives, J. Struct. Eng., 145(7), 04019049.
- Smith, P.D., Hetherington, J.G. (1994) Blast and Ballistic Loading of Structures, Oxford, UK: Butterworth-Heinemann.
- Sung, S., Chong, J. (2020) A Fast-Running Method for Blast Load Prediction Shielding by a Protective Barrier, Def. Technol., 16(2), pp.308~315. https://doi.org/10.1016/j.dt.2019.07.011
- Tyas, A., Warren, J.A., Bennett, T., Fay, S. (2011) Prediction of Clearing Effects in Far-Field Blast Loading of Finite Targets, Shock Waves, 21(2), pp.111~119. https://doi.org/10.1007/s00193-011-0308-0