DOI QR코드

DOI QR Code

RNA Binding Protein Rbms1 Enables Neuronal Differentiation and Radial Migration during Neocortical Development by Binding and Stabilizing the RNA Message for Efr3a

  • Habib, Khadija (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University) ;
  • Bishayee, Kausik (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University) ;
  • Kang, Jieun (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University) ;
  • Sadra, Ali (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University) ;
  • Huh, Sung-Oh (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University)
  • 투고 : 2022.03.18
  • 심사 : 2022.04.09
  • 발행 : 2022.08.31

초록

Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelopmental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.

키워드

과제정보

This work was supported by a grant from the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2019M3C7A1032601, 2021R1A2C1005395, 2021M3E5D9021902) to S.-O.H.

참고문헌

  1. Baird, D., Stefan, C., Audhya, A., Weys, S., and Emr, S.D. (2008). Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3. J. Cell Biol. 183, 1061-1074. https://doi.org/10.1083/jcb.200804003
  2. Bandziulis, R.J., Swanson, M.S., and Dreyfuss, G. (1989). RNA-binding proteins as developmental regulators. Genes Dev. 3, 431-437. https://doi.org/10.1101/gad.3.4.431
  3. Bishayee, K., Habib, K., Nazim, U.M., Kang, J., Szabo, A., Huh, S.O., and Sadra, A. (2022). RNA binding protein HuD promotes autophagy and tumor stress survival by suppressing mTORC1 activity and augmenting ARL6IP1 levels. J. Exp. Clin. Cancer Res. 41, 18.
  4. Bojjireddy, N., Guzman-Hernandez, M.L., Reinhard, N.R., Jovic, M., and Balla, T. (2015). EFR3s are palmitoylated plasma membrane proteins that control responsiveness to G-protein-coupled receptors. J. Cell Sci. 128, 118-128.
  5. Bryant, C.D. and Yazdani, N. (2016). RNA-binding proteins, neural development and the addictions. Genes Brain Behav. 15, 169-186. https://doi.org/10.1111/gbb.12273
  6. Cha, I.J., Lee, D., Park, S.S., Chung, C.G., Kim, S.Y., Jo, M.G., Kim, S.Y., Lee, B.H., Lee, Y.S., and Lee, S.B. (2020). Ataxin-2 dysregulation triggers a compensatory fragile X mental retardation protein decrease in Drosophila C4da neurons. Mol. Cells 43, 870-879.
  7. Choi, S., Sadra, A., Kang, J., Ryu, J.R., Kim, J.H., Sun, W., and Huh, S.O. (2019). Farnesylation-defective Rheb increases axonal length independently of mTORC1 activity in embryonic primary neurons. Exp. Neurobiol. 28, 172-182. https://doi.org/10.5607/en.2019.28.2.172
  8. Dreyfuss, G., Swanson, M.S., and Pinol-Roma, S. (1988). Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem. Sci. 13, 86-91. https://doi.org/10.1016/0968-0004(88)90046-1
  9. Fujimoto, M., Matsumoto, K., Iguchi-Ariga, S.M., and Ariga, H. (2001). Disruption of MSSP, c-myc single-strand binding protein, leads to embryonic lethality in some homozygous mice. Genes Cells 6, 1067-1075. https://doi.org/10.1046/j.1365-2443.2001.00488.x
  10. Gupta, A.R., Pirruccello, M., Cheng, F., Kang, H.J., Fernandez, T.V., Baskin, J.M., Choi, M., Liu, L., Ercan-Sencicek, A.G., Murdoch, J.D., et al. (2014). Rare deleterious mutations of the gene EFR3A in autism spectrum disorders. Mol. Autism 5, 31.
  11. Huttner, W.B. and Kosodo, Y. (2005). Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr. Opin. Cell Biol. 17, 648-657. https://doi.org/10.1016/j.ceb.2005.10.005
  12. Iida, M., Taira, T., Ariga, H., and Iguchi-Ariga, S.M. (1997). Induction of apoptosis in HeLa cells by MSSP, c-myc binding proteins. Biol. Pharm. Bull. 20, 10-14. https://doi.org/10.1248/bpb.20.10
  13. Ji, L., Bishayee, K., Sadra, A., Choi, S., Choi, W., Moon, S., Jho, E.H., and Huh, S.O. (2017). Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex. Neuroscience 355, 126-140. https://doi.org/10.1016/j.neuroscience.2017.05.003
  14. Keene, J.D., Komisarow, J.M., and Friedersdorf, M.B. (2006). RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat. Protoc. 1, 302-307. https://doi.org/10.1038/nprot.2006.47
  15. Kimura, K., Saga, H., Hayashi, K., Obata, H., Chimori, Y., Ariga, H., and Sobue, K. (1998). c-Myc gene single-strand binding protein-1, MSSP-1, suppresses transcription of alpha-smooth muscle actin gene in chicken visceral smooth muscle cells. Nucleic Acids Res. 26, 2420-2425. https://doi.org/10.1093/nar/26.10.2420
  16. La Fata, G., Gartner, A., Dominguez-Iturza, N., Dresselaers, T., Dawitz, J., Poorthuis, R.B., Averna, M., Himmelreich, U., Meredith, R.M., Achsel, T., et al. (2014). FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. Nat. Neurosci. 17, 1693-1700. https://doi.org/10.1038/nn.3870
  17. Lunde, B.M., Moore, C., and Varani, G. (2007). RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479-490. https://doi.org/10.1038/nrm2178
  18. McKee, A.E., Minet, E., Stern, C., Riahi, S., Stiles, C.D., and Silver, P.A. (2005). A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev. Biol. 5, 14.
  19. Moffat, J.J., Ka, M., Jung, E.M., and Kim, W.Y. (2015). Genes and brain malformations associated with abnormal neuron positioning. Mol. Brain 8, 72.
  20. Nakatsu, F., Baskin, J.M., Chung, J., Tanner, L.B., Shui, G., Lee, S.Y., Pirruccello, M., Hao, M., Ingolia, N.T., Wenk, M.R., et al. (2012). PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity. J. Cell Biol. 199, 1003-1016. https://doi.org/10.1083/jcb.201206095
  21. Niki, T., Izumi, S., Saegusa, Y., Taira, T., Takai, T., Iguchi-Ariga, S.M., and Ariga, H. (2000). MSSP promotes ras/myc cooperative cell transforming activity by binding to c-Myc. Genes Cells 5, 127-141. https://doi.org/10.1046/j.1365-2443.2000.00311.x
  22. Nilsen, T.W. (2014). Preparation of cross-linked cellular extracts with formaldehyde. Cold Spring Harb. Protoc. 2014, 1001-1003.
  23. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L., and Kriegstein, A.R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136-144. https://doi.org/10.1038/nn1172
  24. Pilaz, L.J. and Silver, D.L. (2015). Post-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain. Wiley Interdiscip. Rev. RNA 6, 501-515. https://doi.org/10.1002/wrna.1289
  25. Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., et al. (2017). Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 31, 2104-2113. https://doi.org/10.1096/fj.201601207R
  26. Saito, T. (2006). In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552-1558. https://doi.org/10.1038/nprot.2006.276
  27. Schwer, B., Schneider, S., Pei, Y., Aronova, A., and Shuman, S. (2009). Characterization of the Schizosaccharomyces pombe Spt5-Spt4 complex. RNA 15, 1241-1250. https://doi.org/10.1261/rna.1572709
  28. Taira, T., Maeda, J., Onishi, T., Kitaura, H., Yoshida, S., Kato, H., Ikeda, M., Tamai, K., Iguchi-Ariga, S.M., and Ariga, H. (1998). AMY-1, a novel C-MYC binding protein that stimulates transcription activity of C-MYC. Genes Cells 3, 549-565. https://doi.org/10.1046/j.1365-2443.1998.00206.x
  29. Xia, W., Su, L., and Jiao, J. (2018). Cold-induced protein RBM3 orchestrates neurogenesis via modulating Yap mRNA stability in cold stress. J. Cell Biol. 217, 3464-3479. https://doi.org/10.1083/jcb.201801143
  30. Yeh, H.S. and Yong, J. (2016). Alternative polyadenylation of mRNAs: 3'-untranslated region matters in gene expression. Mol. Cells 39, 281-285. https://doi.org/10.14348/molcells.2016.0035
  31. Yu, J., Navickas, A., Asgharian, H., Culbertson, B., Fish, L., Garcia, K., Olegario, J.P., Dermit, M., Dodel, M., Hanisch, B., et al. (2020). RBMS1 suppresses colon cancer metastasis through targeted stabilization of its mRNA regulon. Cancer Discov. 10, 1410-1423. https://doi.org/10.1158/2159-8290.CD-19-1375