DOI QR코드

DOI QR Code

Water-stable solvent dependent multicolored perovskites based on lead bromide

  • Sharipov, Mirkomil (Department of Chemistry, Changwon National University) ;
  • Hwang, Soojin (Department of Chemistry, Changwon National University) ;
  • Kim, Won June (Department of Chemistry, Changwon National University) ;
  • Huy, Bui The (Department of Chemistry, Changwon National University) ;
  • Tawfik, Salah M. (Department of Chemistry, Changwon National University) ;
  • Lee, Yong-Ill (Department of Chemistry, Changwon National University)
  • Received : 2021.09.29
  • Accepted : 2022.06.09
  • Published : 2022.08.25

Abstract

The synthesis of organic and hybrid organic-inorganic perovskites directly from solution improves the cost- and energy-efficiency of processing. To date, numerous research efforts have been devoted to investigating the influence of the various solvent parameters for the synthesis of lead halide perovskites, focused on the effects of different single solvents on the efficiency of the resulting perovskites. In this work, we investigated the effect of solvent blends for the first time on the structure and phase of perovskites produced via the Lewis base vapor diffusion method to develop a new synthetic approach for water-stable CsPbBr3 particles with nanometer-sized dimensions. Solvent blends prepared with DMF and water-miscible solvents with different Gutmann's donor numbers (DN) affect the Pb ions differently, resulting in a variety of lead bromide species with various colors. The use of a DMF/isopropanol solvent mixture was found to induce the formation of the Ruddlesden-Popper perovskite based on lead bromide. This perovskite undergoes a blue color shift in the solvated state owing to the separation of nanoplatelets. In contrast, the replacement of isopropanol with DMSO, which has a high DN, induces the formation of spherical CsPbBr3 perovskite nanoparticles that exhibit green emission. Finally, the integration of acetone in the solvent system leads to the formation of lead bromide complexes with a yellow-orange color and the perovskite CsPbBr3.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C2007028 and 2020R1I1A3A04036531)

References

  1. Akkerman, Q.A., D'Innocenzo, V., Accornero, S., Scarpellini, A., Petrozza, A., Prato, M. and Manna, L. (2015), "Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions", J. Am. Chem. Soc., 137(32), 10276-10281. https://doi.org/10.1021/jacs.5b05602.
  2. Akkerman, Q.A., Park, S., Radicchi, E., Nunzi, F., Mosconi, E., De Angelis, F., Brescia, R., Rastogi, P., Prato, M. and Manna, L. (2017), "Nearly monodisperse insulator CsPbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions and their transformation into CsPbX3 nanocrystals", Nano Lett., 17(3), 1924-1930. https://doi.org/10.1021/acs.nanolett.6b05262.
  3. Akkerman, Q.A., Abdelhady, A.L. and Manna, L. (2018), "Zerodimensional cesium lead halides: History, properties and challenges", J. Phys. Chem. Lett, 9(9), 2326-2337. https://doi.org/10.1021/acs.jpclett.8b00572.
  4. Chin, S.H., Choi, J.W., Hu, Z., Mardegan, L., Sessolo, M. and Bolink, H.J. (2020), "Tunable luminescent lead bromide complexes", J. Mater. Chem. C, 8(45), 15996-16000. https://doi.org/10.1039/D0TC04057F.
  5. De Bastiani, M., Dursun, I., Zhang, Y., Alshankiti, B.A., Miao, X.H., Yin, J., Yengel, E., Alarousu, E., Turedi, B., Almutlaq, J.M., Saidaminov, M.I., Mitra, S., Gereige, I., AlSaggaf, A., Zhu, Y., Han, Y., Roqan, I.S., Bredas, J.L., Mohammed, O.F. and Bakr, O.M. (2017), "Inside perovskites: Quantum luminescence from bulk Cs4PbBr6 single crystals", Chem. Mater., 29(17), 7108-7113. https://doi.org/10.1021/acs.chemmater.7b02415.
  6. Du, X., Wu, G., Cheng, J., Dang, H., Ma, K., Zhang, Y.W., Tan, P.F. and Chen, S. (2017), "High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes", RSC Adv., 7(17), 10391-10396. https://doi.org/10.1039/C6RA27665B.
  7. Dutta, S.K. and Perkovic, M.W. (2002), "Lead as its own luminescent sensor", Inorg. Chem., 41(26), 6938-6940. https://doi.org/10.1021/ic0260724.
  8. Fateev, S.A., Marchenko, E.I., Petrov, A.A., Goodilin, E.A. and Tarasov, A.B. (2020), "New acidic precursor and acetone-based solvent for fast perovskite processing via proton-exchange reaction with methylamine", Molecules, 25(8), 1856. https://doi.org/10.3390/molecules25081856.
  9. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. and Wentzcovitch, R.M. (2009), "Quantum espresso: A modular and open-source software project for quantum simulations of materials", J. Phys. Condens. Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502.
  10. Giannozzi, P. andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.Y., Kokalj, A., Kucukbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.V., Otero-de-la-Roza, A., Paulatto, L., Ponce, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. and Baroni, S. (2017), "Advanced capabilities for materials modelling with quantum espresso", J. Phys. Condens. Matter, 29(46), 465901. https://doi.org/10.1088/1361-648x/aa8f79.
  11. Hamill, J.C., Schwartz, J. and Loo, Y.L. (2018), "Influence of solvent coordination on hybrid organic-inorganic perovskite formation", ACS Energy Lett., 3(1), 92-97. https://doi.org/10.1021/acsenergylett.7b01057.
  12. Han, J., Sharipov, M., Hwang, S., Lee, Y., Huy, B.T. and Lee, Y.I. (2022), "Water-stable perovskite-loaded nanogels containing antioxidant property for highly sensitive and selective detection of roxithromycin in animal-derived food products", Sci. Rep., 12(1), 3147. https://doi.org/10.1038/s41598-022-07030-9.
  13. Hu, H., Wu, L., Tan, Y., Zhong, Q., Chen, M., Qiu, Y., Yang, D., Sun, B., Zhang, Q. and Yin, Y. (2018), "Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles", J. Am. Chem. Soc., 140(1), 406-412. https://doi.org/10.1021/jacs.7b11003.
  14. Huang, S., Li, Z., Kong, L., Zhu, N., Shan, A. and Li, L. (2016), "Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in "waterless" toluene", J. Am. Chem. Soc., 138(18), 5749-5752. https://doi.org/10.1021/jacs.5b13101.
  15. Jana, A. and Kim, K.S. (2018), "Water-stable, fluorescent organic-inorganic hybrid and fully inorganic perovskites", ACS Energy Lett., 3(9), 2120-2126. https://doi.org/10.1021/acsenergylett.8b01394.
  16. Jung, Y.K., Calbo, J., Park, J.S., Whalley, L.D., Kim, S. and Walsh, A. (2019), "Intrinsic doping limit and defect-assisted luminescence in Cs4PbBr6", J. Mater. Chem. A, 7(35), 20254-20261. https://doi.org/10.1039/C9TA06874K.
  17. Koscher, B.A., Swabeck, J.K., Bronstein, N.D. and Alivisatos, A.P. (2017), "Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment", J. Am. Chem. Soc., 139(19), 6566-6569. https://doi.org/10.1021/jacs.7b02817.
  18. Kovalenko, M.V., Protesescu, L. and Bodnarchuk, M.I. (2017), "Properties and potential optoelectronic applications of lead halide perovskite nanocrystals", Science, 358(6364), 745-750. https://doi.org/10.1126/science.aam7093.
  19. Li, S.H., Chen, F.R., Zhou, Y.F. and Xu, J.G. (2009), "Pb4Br113- cluster as a fluorescent indicator for micro water content in aprotic organic solvents", Analyst, 134(3), 443-446. https://doi.org/10.1039/B817787B.
  20. Li, G., Rivarola, F.W.R., Davis, N.J.L.K., Bai, S., Jellicoe, T.C., de la Pena, F., Hou, S., Ducati, C., Gao, F., Friend, R.H., Greenham, N.C. and Tan, Z.K. (2016), "Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method", Adv. Mater., 28(18), 3528-3534. https://doi.org/10.1002/adma.201600064.
  21. Li, F., Wang, H., Kufer, D., Liang, L., Yu, W., Alarousu, E., Ma, C., Li, Y., Liu, Z., Liu, C., Wei, N., Wang, F., Chen, L., Mohammed, O.F., Fratalocchi, A., Liu, X., Konstantatos, G. and Wu, T. (2017), "Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes", Adv. Mater., 29, 1602432. https://doi.org/10.1002/adma.201602432.
  22. Li, Z., Hu, Q., Tan, Z., Yang, Y., Leng, M., Liu, X., Ge, C., Niu, G. and Tang, J. (2018), "Aqueous synthesis of lead halide perovskite nanocrystals with high water stability and bright photoluminescence", ACS Appl. Mater. Interf., 10(50), 43915-43922. https://doi.org/10.1021/acsami.8b16471.
  23. Lin, H., Zhang, X., Cai, L., Lao, J., Qi, R., Luo, C., Chen, S., Peng, H., Huang, R. and Duan, C. (2020), "High-stability fluorescent perovskites embedded in PbBrOH triggered by imidazole derivatives in water", J. Mater. Chem. C, 8(16), 5594-5599. https://doi.org/10.1039/D0TC00939C.
  24. Liu, Z., Bekenstein, Y., Ye, X., Nguyen, S.C., Swabeck, J., Zhang, D., Lee, S.T., Yang, P., Ma, W. and Alivisatos, A.P. (2017), "Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals", J. Am. Chem. Soc., 139(15), 5309-5312. https://doi.org/10.1021/jacs.7b01409.
  25. Liu, K.K., Liu, Q., Yang, D.W., Liang, Y.C., Sui, L.Z., Wei, J.Y., Xue, G.W., Zhao, W.B., Wu, X.Y., Dong, L. and Shan, C.X. (2020), "Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability", Light Sci. Appl., 9(1), 44. https://doi.org/10.1038/s41377-020-0283-2.
  26. Loiudice, A., Saris, S., Oveisi, E., Alexander, D.T.L. and Buonsanti, R. (2017), "CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light and heat", Angew. Chem. Int. Ed., 56(36), 10696-10701. https://doi.org/10.1002/anie.201703703.
  27. Nayak, P.K., Mahesh, S., Snaith, H.J. and Cahen, D. (2019), "Photovoltaic solar cell technologies: Analysing the state of the art", Nature Rev. Mater., 4(4), 269-285. https://doi.org/10.1038/s41578-019-0097-0.
  28. Noel, N.K., Abate, A., Stranks, S.D., Parrott, E.S., Burlakov, V.M., Goriely, A. and Snaith, H.J. (2014), "Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites", ACS Nano, 8(10), 9815-9821. https://doi.org/10.1021/nn5036476.
  29. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K. (2008), "Restoring the density-gradient expansion for exchange in solids and surfaces", Phys. Rev. Lett., 100(13), 136406. https://doi.org/10.1103/PhysRevLett.100.136406.
  30. Quan, L.N., Quintero-Bermudez, R., Voznyy, O., Walters, G., Jain, A., Fan, J.Z., Zheng, X., Yang, Z. and Sargent, E.H. (2017), "Highly emissive green perovskite nanocrystals in a solid state crystalline matrix", Adv. Mater., 29(21), 1605945. https://doi.org/10.1002/adma.201605945.
  31. Rahimnejad, S., Kovalenko, A., Fores, S.M., Aranda, C. and Guerrero, A. (2016), "Coordination chemistry dictates the structural defects in lead halide perovskites", ChemPhysChem, 17(18), 2795-2798. https://doi.org/10.1002/cphc.201600575.
  32. Rai, R.S. and Bajpai, V. (2021), "Recent advances in ZnO nanostructures and their future perspective", Adv. Nano Res., 11(1), 7. https://doi.org/10.12989/anr.2021.11.1.037.
  33. Riesen, N., Lockrey, M., Badek, K. and Riesen, H. (2019), "On the origins of the green luminescence in the "zero-dimensional perovskite" Cs4PbBr6: Conclusive results from cathodoluminescence imaging", Nanoscale, 11(9), 3925-3932. https://doi.org/10.1039/C8NR09255A.
  34. Sadhanala, A., Deschler, F., Thomas, T.H., Dutton, S.E., Goedel, K.C., Hanusch, F.C., Lai, M.L., Steiner, U., Bein, T., Docampo, P., Cahen, D. and Friend, R.H. (2014), "Preparation of singlephase films of CH3NH3Pb(I1-xBrx)3 with sharp optical band edges", J. Phys. Chem. Lett, 5(15), 2501-2505. https://doi.org/10.1021/jz501332v.
  35. Saidaminov, M.I., Abdelhady, A.L., Maculan, G. and Bakr, O.M. (2015), "Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth", Chem. Commun., 51(100), 17658-17661. https://doi.org/10.1039/C5CC06916E.
  36. Sergeyev, D. (2021), "One-dimensional schottky nanodiode based on telescoping polyprismanes", Adv. Nano Res., 10(5), 471-479. https://doi.org/10.12989/anr.2021.10.5.471.
  37. Seth, S. and Samanta, A. (2017), "Fluorescent phase-pure zerodimensional perovskite-related Cs4PbBr6 microdisks: Synthesis and single-particle imaging study", J. Phys. Chem. Lett, 8(18), 4461-4467. https://doi.org/10.1021/acs.jpclett.7b02100.
  38. Shamsi, J., Urban, A.S., Imran, M., De Trizio, L. and Manna, L. (2019), "Metal halide perovskite nanocrystals: Synthesis, postsynthesis modifications and their optical properties", Chem. Rev., 119(5), 3296-3348. https://doi.org/10.1021/acs.chemrev.8b00644.
  39. Shi, S., Wang, Y., Zeng, S., Cui, Y. and Xiao, Y. (2020), "Surface regulation of CsPbBr3 quantum dots for standard blue-emission with boosted PLQY", Adv. Opt. Mater., 8(12), 2000167. https://doi.org/10.1002/adom.202000167.
  40. Stevenson, J., Sorenson, B., Subramaniam, V.H., Raiford, J., Khlyabich, P.P., Loo, Y.L. and Clancy, P. (2017), "Mayer bond order as a metric of complexation effectiveness in lead halide perovskite solutions", Chem. Mater., 29(6), 2435-2444. https://doi.org/10.1021/acs.chemmater.6b04327.
  41. van Setten, M.J., Giantomassi, M., Bousquet, E., Verstraete, M.J., Hamann, D.R., Gonze, X. and Rignanese, G.M. (2018), "The pseudodojo: Training and grading a 85 element optimized normconserving pseudopotential table", Comput. Phys. Commun., 226, p. 39-54. https://doi.org/10.1016/j.cpc.2018.01.012.
  42. Wu, L., Hu, H., Xu, Y., Jiang, S., Chen, M., Zhong, Q., Yang, D., Liu, Q., Zhao, Y., Sun, B., Zhang, Q. and Yin, Y. (2017), "From nonluminescent CsPbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism", Nano Lett., 17(9), 5799-5804. https://doi.org/10.1021/acs.nanolett.7b02896.
  43. Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S. and Sum, T.C. (2013), "Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3", Science, 342(6156), 344-347. https://doi.org/10.1126/science.1243167.
  44. Xu, J., Huang, W., Li, P., Onken, D.R., Dun, C., Guo, Y., Ucer, K.B., Lu, C., Wang, H., Geyer, S.M., Williams, R.T. and Carroll, D.L. (2017), "Imbedded nanocrystals of cspbbr3 in Cs4PbBr6: Kinetics, enhanced oscillator strength and application in light-emitting diodes", Adv. Mater., 29(43), 1703703. https://doi.org/10.1002/adma.201703703.
  45. Xuan, T., Lou, S., Huang, J., Cao, L., Yang, X., Li, H. and Wang, J. (2018), "Monodisperse and brightly luminescent CsPbBr3/Cs4PbBr6 perovskite composite nanocrystals", Nanoscale, 10(21), 9840-9844. https://doi.org/10.1039/C8NR01266K.
  46. Yamanouchi, J., Oku, T., Ohishi, Y., Fukaya, M., Ueoka, N., Tanaka, H. and Suzuki, A. (2018), "Fabrication and characterization of perovskite CH3NH3Pb1-xSbxI3-3xBr3x photovoltaic devices", Adv. Mater. Res., 7(1), 73-81. https://doi.org/10.12989/amr.2018.7.1.073.
  47. Yin, J., Yang, H., Song, K., El-Zohry, A.M., Han, Y., Bakr, O.M., Bredas, J.L. and Mohammed, O.F. (2018), "Point defects and green emission in zero-dimensional perovskites", J. Phys. Chem. Lett, 9(18), 5490-5495. https://doi.org/10.1021/acs.jpclett.8b02477.
  48. Ying, G., Jana, A., Osokin, V., Farrow, T., Taylor, R.A. and Park, Y. (2020), "Highly efficient photoluminescence and lasing from hydroxide coated fully inorganic perovskite micro/nano-rods", Adv. Opt. Mater., 8(23), 2001235. https://doi.org/10.1002/adom.202001235.
  49. Yoon, S.J., Draguta, S., Manser, J.S., Sharia, O., Schneider, W.F., Kuno, M. and Kamat, P.V. (2016), "Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation", ACS Energy Lett., 1(1), 290-296. https://doi.org/10.1021/acsenergylett.6b00158.
  50. Zhong, Q., Cao, M., Hu, H., Yang, D., Chen, M., Li, P., Wu, L. and Zhang, Q. (2018), "One-pot synthesis of highly stable CsPbBr3 @SiO2 core-shell nanoparticles", ACS Nano, 12(8), 8579-8587. https://doi.org/10.1021/acsnano.8b04209.
  51. Zou, Y., Xu, H., Li, S., Song, T., Kuai, L., Bai, S., Gao, F. and Sun, B. (2019), "Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films", ACS Photonics, 6(7), 1728-1735. https://doi.org/10.1021/acsphotonics.9b00435.