DOI QR코드

DOI QR Code

MATRICES SIMILAR TO CENTROSYMMETRIC MATRICES

  • Itza-Ortiz, Benjamin A. (Centro de Investigacion en Matematicas Universidad Autonoma del Estado de Hidalgo) ;
  • Martinez-Avendano, Ruben A. (Departamento Academico de Matematicas Instituto Tecnologico Autonomo de Mexico)
  • Received : 2022.03.06
  • Accepted : 2022.05.13
  • Published : 2022.09.01

Abstract

In this paper we give conditions on a matrix which guarantee that it is similar to a centrosymmetric matrix. We use this conditions to show that some 4 × 4 and 6 × 6 Toeplitz matrices are similar to centrosymmetric matrices. Furthermore, we give conditions for a matrix to be similar to a matrix which has a centrosymmetric principal submatrix, and conditions under which a matrix can be dilated to a matrix similar to a centrosymmetric matrix.

Keywords

References

  1. I. T. Abu-Jeib, Centrosymmetric matrices: properties and an alternative approach, Can. Appl. Math. Q. 10 (2002), no. 4, 429-445.
  2. A. C. Aitken, Determinants and Matrices, Oliver and Boyd, Edinburgh, 1939.
  3. A. Cantoni and P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976), no. 3, 275-288. https://doi.org/10.1016/0024-3795(76)90101-4
  4. I. J. Good, The inverse of a centrosymmetric matrix, Technometrics 12 (1970), 925-928. https://doi.org/10.2307/1267339
  5. B. A. Itza-Ortiz, R. A. Martinez-Avendano, and H. Nakazato, The numerical range of some periodic tridiagonal operators is the convex hull of the numerical ranges of two finite matrices, Linear Multilinear Algebra 69 (2021), no. 15, 2830-2849. https://doi.org/10.1080/03081087.2021.1957760
  6. H.-B. Meyer, The matrix equation AZ + B - ZCZ - ZD = 0, SIAM J. Appl. Math. 30 (1976), no. 1, 136-142. https://doi.org/10.1137/0130016
  7. M. Nouri and S. Talatahari, The algebraic Riccati matrix equation for eigendecomposition of canonical forms, Math. Probl. Eng. 2013 (2013), Art. ID 176389, 7 pp. https://doi.org/10.1155/2013/176389
  8. O. Taussky and J. Todd, Another look at a matrix of Mark Kac, Linear Algebra Appl. 150 (1991), 341-360. https://doi.org/10.1016/0024-3795(91)90179-Z
  9. J. R.Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly 92 (1985), no. 10, 711-717. https://doi.org/10.2307/2323222