References
- I. T. Abu-Jeib, Centrosymmetric matrices: properties and an alternative approach, Can. Appl. Math. Q. 10 (2002), no. 4, 429-445.
- A. C. Aitken, Determinants and Matrices, Oliver and Boyd, Edinburgh, 1939.
- A. Cantoni and P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976), no. 3, 275-288. https://doi.org/10.1016/0024-3795(76)90101-4
- I. J. Good, The inverse of a centrosymmetric matrix, Technometrics 12 (1970), 925-928. https://doi.org/10.2307/1267339
- B. A. Itza-Ortiz, R. A. Martinez-Avendano, and H. Nakazato, The numerical range of some periodic tridiagonal operators is the convex hull of the numerical ranges of two finite matrices, Linear Multilinear Algebra 69 (2021), no. 15, 2830-2849. https://doi.org/10.1080/03081087.2021.1957760
- H.-B. Meyer, The matrix equation AZ + B - ZCZ - ZD = 0, SIAM J. Appl. Math. 30 (1976), no. 1, 136-142. https://doi.org/10.1137/0130016
- M. Nouri and S. Talatahari, The algebraic Riccati matrix equation for eigendecomposition of canonical forms, Math. Probl. Eng. 2013 (2013), Art. ID 176389, 7 pp. https://doi.org/10.1155/2013/176389
- O. Taussky and J. Todd, Another look at a matrix of Mark Kac, Linear Algebra Appl. 150 (1991), 341-360. https://doi.org/10.1016/0024-3795(91)90179-Z
- J. R.Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly 92 (1985), no. 10, 711-717. https://doi.org/10.2307/2323222