DOI QR코드

DOI QR Code

Fungal Load of Groundwater Systems in Geographically Segregated Islands: A Step Forward in Fungal Control

  • Joong Hee Cho (Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City) ;
  • Nam Soo Jun (Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City) ;
  • Jong Myong Park (Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City) ;
  • Ki In Bang (Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City) ;
  • Ji Won Hong (Department of Hydrogen and Renewable Energy, Kyungpook National University)
  • 투고 : 2022.07.11
  • 심사 : 2022.09.07
  • 발행 : 2022.10.31

초록

The fungal distribution, diversity, and load were analyzed in the geographically segregated island groundwater systems in Korea. A total of 79 fungal isolates were secured from seven islands and identified based on the internal transcribed spacer (ITS) sequences. They belonged to three phyla (Ascomycota, Basidiomycota, and Chlorophyta), five classes, sixteen orders, twenty-two families, and thirty-one genera. The dominant phylum was Ascomycota (91.1%), with most fungi belonging to the Cladosporium (21.5%), Aspergillus (15.2%), and Stachybotrys (8.9%) genera. Cladosporium showed higher dominance and diversity, being widely distributed throughout the geographically segregated groundwater systems. Based on the diversity indices, the genera richness (4.821) and diversity (2.550) were the highest in the groundwater system of the largest scale. As turbidity (0.064-0.462) increased, the overall fungal count increased and the residual chlorine (0.089-0.308) had low relevance compared with the total count and fungal diversity. Cladosporium showed normal mycelial growth in de-chlorinated sterilized samples. Overall, if turbidity increases under higher fungal diversity, bio-deterioration in groundwater-supplying facilities and public health problems could be intensified, regardless of chlorine treatment. In addition to fungal indicators and analyzing methods, physical hydrostatic treatment is necessary for monitoring and controlling fungal contamination.

키워드

과제정보

This research was supported by Kyungpook National University Research Fund, 2020.

참고문헌

  1. Ministry of Environment, Republic of Korea. Drinking water management act (act no. 16079). Sejong City, Republic of Korea: Korea Ministry of Government Legislation; 2018.
  2. Jing M, Huang B, Li W, et al. Biocontrol of Cladosporium cladosporioides of mango fruit with Bacillus atrophaeus TE7 and effects on storage quality. Curr Microbiol. 2021;78(2):765-774. https://doi.org/10.1007/s00284-020-02343-2
  3. Park JM, Kim JM, Hong JW, et al. Introduction of highly effective proactive food safety management programs into food distribution channels: for safe food labeling and safe advertisements. J Food Saf. 2020;40(2):e12751.
  4. Park JM, Lee AR, Hong JW, et al. Microbial risks in food franchise: a step forward in establishing ideal cleaning and disinfection practices in SSOPs. J Food Saf. 2019;39(2):e12606.
  5. Alvarez-Barragan J, Dominguez-Malfavon L, Vargas-Suarez M, et al. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl Environ Microbiol. 2016;82(17):5225-5235. https://doi.org/10.1128/AEM.01344-16
  6. Brunner I, Fischer M, Ruthi J, et al. Ability of € fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLOS One. 2018;13(8):e0202047.
  7. Chen S, Liu C, Peng C, et al. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLOS One. 2012;7(10):e47205.
  8. Hong JY, Kim YH, Jung MH, et al. Characterization of xylanase of Cladosporium cladosporioides H1 isolated from Janggyeong Panjeon in Haeinsa Temple. Mycobiology. 2011;39(4):306-309. https://doi.org/10.5941/MYCO.2011.39.4.306
  9. Kwa sna H, Kuberka A. Fungi in public heritage buildings in Poland. Pol J Environ Stud. 2020;29(5):3651-3662. https://doi.org/10.15244/pjoes/112213
  10. Progovitz RF. Black mold your health and your home 96. New York, USA: The Forager Press, LLC. 2003.
  11. Andersen B, Nielsen KF, Thrane U, et al. Molecular and phenotypic descriptions of Stachybotrys chlorohalonata sp. nov. and two chemotypes of Stachybotrys chartarum found in water-damaged buildings. Mycologia. 2003;95(6):1227-1238. https://doi.org/10.1080/15572536.2004.11833031
  12. Andersen B, Frisvad JC, Sondergaard I, et al. Associations between fungal species and water-damaged building materials. Appl Environ Microbiol. 2011;77(12):4180-4188.
  13. Page EH, Trout DB. The role of Stachybotrys mycotoxins in building-related illness. AIHAJ. 2001;62(5):644-648. https://doi.org/10.1202/0002-8894(2001)062<0644:TROSMI>2.0.CO;2
  14. Chou H, Tam MF, Lee LH, et al. Vacuolar serine protease is a major allergen of Cladosporium cladosporioides. Int Arch Allergy Immunol. 2008;146(4):277-286. https://doi.org/10.1159/000121462
  15. Segura-Medina P, Vargas MH, Aguilar-Romero JM, et al. Mold burden in house dust and its relationship with asthma control. Respir Med. 2019;150:74-80. https://doi.org/10.1016/j.rmed.2019.02.014
  16. Vincent M, Corazza F, Chasseur C, et al. Relationship between mold exposure, specific Ig E sensitization, and clinical asthma: a case-control study. Ann Allergy Asthma Immunol. 2018;121(3):333-339. https://doi.org/10.1016/j.anai.2018.06.016
  17. Dijksterhuis J. Fungal spores: highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol. 2019;81:2-11. https://doi.org/10.1016/j.fm.2018.11.006
  18. Mafart P, Legu erinel I, Couvert O, et al. Quantification of spore resistance for assessment and optimization of heating processes: a never-ending story. Food Microbiol. 2010;27(5):568-572. https://doi.org/10.1016/j.fm.2010.03.002
  19. Jaafar M, Marcilla AL, Felipe-Sotelo M, et al. Effect of food preparation using naturally-contaminated groundwater from La Pampa, Argentina: estimation of elemental dietary intake from rice and drinking water. Food Chem. 2018;246:258-265. https://doi.org/10.1016/j.foodchem.2017.11.019
  20. Ministry of Environment, Republic of Korea. Test of drinking water. Incheon, Republic of Korea: National Institute of Environmental Research; 2021.
  21. Reasoner DJ. Heterotrophic plate count methodology in the United States. Int J Food Microbiol. 2004;92(3):307-315.
  22. White TJ, Bruns TD, Lee SB, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In MA Innis, DH Gelfand and JJ Sninsky (Eds.). PCR protocols: a guide to methods and applications. San Diego, USA: Academic Press; 1990. p. 315-322.
  23. Chen Y, Ye W, Zhang Y, et al. High speed BLASTn: an accelerated mega BLAST search tool. Nucleic Acids Res. 2015;43(16):7762-7768. https://doi.org/10.1093/nar/gkv784
  24. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  25. Aiyar A. The use of Clustal W and Clustal X for multiple sequence alignment. Methods Mol Biol. 2000;132:221-241.
  26. Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  27. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol. 1992;9:945-967.
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-791. https://doi.org/10.2307/2408678
  29. Tajima F, Nei M. Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol. 1984;1:269-285.
  30. Nei M, Kumar S. Molecular evolution and phylogenetics (32-33). New York, USA: Oxford University Press; 2000.
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-425.
  32. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103(3):626-631. https://doi.org/10.1073/pnas.0507535103
  33. Margalef R. Information theory in ecology. Int J Gen Syst. 1958;3:36-71.
  34. Mendes RS, Evangelista LR, Thomaz SM, et al. A unified index to measure ecological diversity and species rarity. Ecography. 2008;31(4):450-456. https://doi.org/10.1111/j.0906-7590.2008.05469.x
  35. Whittaker RH. Evolution of species diversity in land communities. Evol Biol. 1972;10:1-67.
  36. Marcon E, Scotti I, H erault B, et al. Generalization of the partitioning of Shannon diversity. PLOS One. 2014;9(3):e90289.
  37. Lambshead PJD, Platt HM, Shaw KM. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist. 1983;17(6):859-874. https://doi.org/10.1080/00222938300770671
  38. Baird RB, Eaton AD, Rice EW. Standard methods for the examination of water & wastewater (21st ed), 4500-Cl G. DPD colorimetric method (4-110,112). Washington, DC: American Public Health Association, American Water Works Association; 2005.
  39. ISO technical committee. General requirements for the competence of testing and calibration laboratories. (3rd ed). Washington DC: American National Standards Institute; 2017.
  40. Li P, Yoshimura T, Furuta T, et al. Sunlight caused interference in outdoor N, N-diethyl-p-phenylenediamine colorimetric measurement for residual chlorine and the solution for on-site work. Ecotoxicol Environ Saf. 2019;169:640-644. https://doi.org/10.1016/j.ecoenv.2018.11.055
  41. Baird RB, Eaton AD, Rice EW. Standard methods for the examination of water & wastewater (21st ed), 2130-B. Nephelometric method (2-9,11). Washington, DC: American Public Health Association, American Water Works Association; 2005.
  42. Fukuda K, Ogawa M, Taniguchi H, et al. Molecular approaches to studying microbial communities: targeting the 16S ribosomal RNA gene. J Uoeh. 2016;38(3):223-232. https://doi.org/10.7888/juoeh.38.223
  43. Chowdhury S. Heterotrophic bacteria in drinking water distribution system: a review. Environ Monit Assess. 2012;184(10):6087-6137.
  44. Ministry of Environment, Republic of Korea. Water supply and waterworks installation act (act no. 17326). Sejong City, Republic of Korea: Korea Ministry of Government Legislation; 2000.
  45. Institut National de Sante Publique du Quebec. Cladosporium cladosporioides. Gouvernement du Quebec. Quebec, Canada: Institut national de sante publique Quebec; 2022. Available from: https://www.inspq.qc.ca/node/488.
  46. Flannigan B, Samson RA, Miller JD. Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control. (2nd ed), Boca Raton, FL: CRC Press; 2011.
  47. Deshmukh SK, Rai MK. Biodiversity of fungi: their role in human life 460. Enfield, NH, USA: Science Publishers; 2005.
  48. Sandoval-Denis M, Gen e J, Sutton DA, et al. New species of Cladosporium associated with human and animal infections. Persoonia. 2016;36:281-298. https://doi.org/10.3767/003158516X691951
  49. Etzel RA, Montana E, Sorenson WG, et al. Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi. Arch Pediatr Adolesc Med. 1998;152(8):757-762. https://doi.org/10.1001/archpedi.152.11.1055
  50. Pestka JJ, Yike I, Dearborn DG, et al. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci. 2008;104(1):4-26. https://doi.org/10.1093/toxsci/kfm284
  51. Croston TL, Lemons AR, Barnes MA, et al. Inhalation of Stachybotrys chartarum fragments induces pulmonary arterial remodeling. Am J Respir Cell Mol Biol. 2020;62(5):563-576. https://doi.org/10.1165/rcmb.2019-0221OC
  52. Kuhn DM, Ghannoum MA. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev. 2003;16(1):144-172. https://doi.org/10.1128/CMR.16.1.144-172.2003
  53. Bitnun A, Nosal RM. Stachybotrys chartarum (atra) contamination of the indoor environment: health implications. Paediatr Child Health. 1999;4(2):125-129. https://doi.org/10.1093/pch/4.2.125
  54. Ding Y, Zhu X, Hao L, et al. Bioactive iidolyl diketopiperazines from the marine derived endophytic Aspergillus versicolor DY180635. Mar. Drugs. 2020;18(7):338.
  55. Gonzalez-Abradelo D, P erez-Llano Y, Peidro-Guzman H, et al. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. Bioresour Technol. 2019;279:287-296. https://doi.org/10.1016/j.biortech.2019.02.002
  56. Hayashi A, Crombie A, Lacey E, et al. Aspergillus sydowii marine fungal bloom in Australian coastal waters, its metabolites and potential impact on Symbiodinium dinoflagellates. Mar Drugs. 2016;14(3):59.
  57. Ingavat N, Mahidol C, Ruchirawat S, et al. Asperaculin A, a sesquiterpenoid from a marine-derived fungus, Aspergillus aculeatus. J Nat Prod. 2011;74(7):1650-1652. https://doi.org/10.1021/np200221w
  58. Li XD, Li X, Li XM, et al. Antimicrobial bisabolane-type sesquiterpenoids from the deep-sea sediment-derived fungus Aspergillus versicolor SD-330. Nat Prod Res. 2021;35(22):4265-4271. https://doi.org/10.1080/14786419.2019.1696792
  59. Niu S, Chen Z, Pei S, et al. Acremolin D, a new acremolin alkaloid from the deep-sea sediment derived Aspergillus sydowii fungus. Nat Prod Res. 2021;12:1-7.
  60. Andersen B, Dosen I, Lewinska AM, et al. Pre-contamination of new gypsum wallboard with potentially harmful fungal species. Indoor Air. 2017;27(1):6-12. https://doi.org/10.1111/ina.12298
  61. Berni E, Tranquillini R, Scaramuzza N, et al. Aspergilli with Neosartorya-type ascospores: heat resistance and effect of sugar concentration on growth and spoilage incidence in berry products. Int J Food Microbiol. 2017;258:81-88. https://doi.org/10.1016/j.ijfoodmicro.2017.07.008
  62. Scaramuzza N, Mutti P, Cigarini M, et al. Effect of peracetic acid on ascospore-forming molds and test microorganisms used for bio-validations of sanitizing processes in food plants. Int J Food Microbiol. 2020;332:108772.
  63. Andrews S, Pardoel D, Harun A, et al. Chlorine inactivation of fungal spores on cereal grains. Int J Food Microbiol. 1997;35(2):153-162. https://doi.org/10.1016/S0168-1605(96)01214-7
  64. Couri D, Abdel-Rahman MS, Bull RJ. Toxicological effects of chlorine dioxide, chlorite and chlorate. Environ Health Perspect. 1982;46:13-17. https://doi.org/10.1289/ehp.824613
  65. Jin M, Liu L, Wang DN, et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. Isme J. 2020;14(7):1847-1856. https://doi.org/10.1038/s41396-020-0656-9
  66. Tuthill RW, Giusti RA, Moore GS, et al. Health effects among newborns after prenatal exposure to ClO2-disinfected drinking water. Environ Health Perspect. 1982;46:39-45.
  67. Wen G, Xu X, Huang T, et al. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: effectiveness, influencing factors, and mechanisms. Water Res. 2017;125:132-140. https://doi.org/10.1016/j.watres.2017.08.038
  68. Lora AR, Douglas B. HACCP and sanitation in restaurants and food service operations. A practical guide based on the FDA food code. Ocala, Florida, USA: Atlantic Publishing Group Inc; 2005.
  69. Visconti V, Rigalma K, Coton E, et al. Impact of the physiological state of fungal spores on their inactivation by active chlorine and hydrogen peroxide. Food Microbiol. 2021;100:103850.
  70. Srivastav AL, Patel N, Chaudhary VK. Disinfection by-products in drinking water: occurrence, toxicity and abatement. Environ Pollut. 2020;267:115474.
  71. Wijayawardene NN, Hyde KD, Dai DQ, et al. Outline of fungi and fungus-like taxa - 2021. Mycosphere. 2022;13(1):53-453. https://doi.org/10.5943/mycosphere/13/1/2