DOI QR코드

DOI QR Code

수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향

Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles

  • 김동겸 (한국표준과학연구원 온실가스표준팀) ;
  • 임정식 (한국표준과학연구원 온실가스표준팀) ;
  • 이정순 (한국표준과학연구원 온실가스표준팀)
  • KIM, DONGKYUM (Standard for Greenhouse Gas, Korea Research Institute of Standards and Science (KRISS)) ;
  • LIM, JEONG SIK (Standard for Greenhouse Gas, Korea Research Institute of Standards and Science (KRISS)) ;
  • LEE, JEONGSOON (Standard for Greenhouse Gas, Korea Research Institute of Standards and Science (KRISS))
  • 투고 : 2022.06.10
  • 심사 : 2022.08.18
  • 발행 : 2022.08.30

초록

Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.

키워드

과제정보

본 연구는 산업통산자원부(MOTIE)재원으로 한국에너지기술평가원(KETEP)이 지원한 연구사업(No. 20213030040380)과 한국표준과학연구원의 "수소스테이션 신뢰성 평가기술 개발" 사업(2022-GP2022-0009) 지원으로 수행된 연구입니다.

참고문헌

  1. D. C. Harris, "Charles David keeling and the story of atmospheric CO2 measurements", Anal. Chem., Vol. 82, No. 19, 2010, pp. 7865-7870, doi: https://doi.org/10.1021/ac1001492.
  2. S. Piao, P. Ciais, Y. Huang, Z. Shen, S. Peng, J. Li, L. Zhou, H. Liu, Y. Ma, Y. Ding, P. Friedlingstein, C. Liu, K. Tan, Y. Yu, T. Zhang, and J. Fang, "The impacts of climate change on water resources and agriculture in China", Nature, Vol. 467, 2010, pp. 43-51, doi: https://doi.org/10.1038/nature09364.
  3. J. Tollefson, "Fire, drought, flood: climate challenges laid bare in US government report", Nature, 2018, doi: https://www.nature.com/articles/d41586-018-07483-x.
  4. Y. Chai, Y. Li, Y. Yang, B. Zhu, S. Li, C. Xu, and C. Liu, "Influence of climate variability and reservoir operation on streamflow in the Yangtze River", Sci. Rep., Vol. 9, No. 1, 2019, pp. 5060, doi: https://doi.org/10.1038/s41598-019-41583-6.
  5. T. H. Moon, Y. Chae, D. S. Lee, D. H. Kim, and H. Kim, "Analyzing climate change impacts on health, energy, water resources, and biodiversity sectors for effective climate change policy in South Korea", Sci. Rep., Vol. 11, No. 1, 2021, pp. 18512, doi: https://doi.org/10.1038/s41598-021-97108-7.
  6. M. S. Speer, L. M. Leslie, S. MacNamara, and J. Hartigan, "From the 1990s climate change has decreased cool season catchment precipitation reducing river heights in Australia's southern Murray-Darling Basin", Sci. Rep., Vol. 11, No. 1, 2021, pp. 16136, doi: https://doi.org/10.1038/s41598-021-95531-4.
  7. A. Chakraborty and P. Singhai, "Asymmetric response of the Indian summer monsoon to positive and negative phases of major tropical climate patterns", Sci. Rep., Vol. 11, No. 1, 2021, pp. 22561, doi: https://doi.org/10.1038/s41598-021-01758-6.
  8. L. Dai, T. F. Cheng, and M. Lu, "Anthropogenic warming disrupts intraseasonal monsoon stages and brings dry-get-wetter climate in future East Asia", npj. Clim. Atmos. Sci., Vol. 5, No. 1, 2022, pp. 1-10, doi: https://doi.org/10.1038/s41612-022-00235-9.
  9. C. M. White, R. R. Steeper, and A. E. Lutz, "The hydro-gen-fueled internal combustion engine: a technical review" Int. J. Hydrogen Energy, Vol. 31, No. 10, 2006, pp. 1292-1305, doi: https://doi.org/10.1016/j.ijhydene.2005.12.001.
  10. R. A. Felseghi, E. Carcadea, M. S. Raboaca, C. N. Trufin, and C. Filote, "Hydrogen fuel cell technology for the sustainable future of stationary applications", Energies, Vol. 12, No. 23, 2019, pp. 4593, doi: https://doi.org/10.3390/en12234593.
  11. Y. Manoharan, S. E. Hosseini, B. Butler, H. Alzhahrani, B. T. F. Senior, T. Ashuri, and J. Krohn, "Hydrogen fuel cell vehicles; current status and future prospect", Appl. Sci., Vol. 9, No. 11, 2019, pp. 2296, doi: https://doi.org/10.3390/app9112296.
  12. G. Glenk and S. Reichelstein, "Reversible power-to-gas systems for energy conversion and storage", Nat. Commun., Vol. 13, No. 1, 2022, pp. 2010, doi: https://doi.org/10.1038/s41467-022-29520-0.
  13. M. H. Kim, "R&D Technology and Dissemination Policy and of FCEV", Korean Industrial Chemistry News, Vol. 24, No. 4, 2021, pp. 22-35. Retrieved from http://www.riss.or.kr/search/detail/DetailView.do?p_mat_type=1a0202e37d52c72d&control_no=71ec116ae0105e6347de9c1710b0298d&keyword=FCEV%%EA%B8%B0%EC%88%A0%%EA%B0%9C%EB%B0%9C%%EB%B0%8F%%EB%B3%B4%EA%B8%89%%EC%A0%95%EC%B1%85%%EB%8F%99%ED%96%A5. 105e6347de9c1710b0298d&keyword=FCEV%%EA%B8%B0%EC%88%A0%%EA%B0%9C%EB%B0%9C%%EB%B0%8F%%EB%B3%B4%EA%B8%89%%EC%A0%95%EC%B1%85%%EB%8F%99%ED%96%A5
  14. Ministry of Trade, Industry and Energy, "Korea's Hydrogen Economy Roadmap", 2019 Retrieved from https://www.msit.go.kr/bbs/view.do?sCode=user&mId=113&mPid=112&bbsSeqNo=94&nttSeqNo=1490593.
  15. A. Murugan and A. S. Brown, "Review of purity analysis methods for performing quality assurance of fuel cell hydrogen", Int. J. Hydrogen Energy, Vol. 40, No. 11, 2015, pp. 4219-4233, doi: https://doi.org/10.1016/j.ijhydene.2015.01.041.
  16. G. Postole and A. Auroux, "The poisoning level of Pt/C catalysts used in PEM fuel cells by the hydrogen feed gas impurities: the bonding strength", Int. J. Hydrogen Energy, Vol. 36, No. 11, 2011, pp. 6817-6825, doi: https://doi.org/10.1016/j.ijhydene.2011.03.018.
  17. ISO 14687:2019, "Hydrogen fuel quality-product specification". Geneva, Switzerland: International Organization for Standardisation; 2019.
  18. ISO 19880-8:2019, "Gaseous hydrogen-fuelling stations-Part 8: Fuel quality control". Geneva, Switzerland: International Organization for Standardisation; 2019.
  19. ISO 21087:2019, "Gas analysis-Analytical methods for hydrogen fuel-Proton exchange membrane (PEM) fuel cell applications for road vehicles". Geneva, Switzerland: International Organization for Standardisation; 2019.
  20. J. W. Kim, T. Lee, and J. W. Choi, "Current status of standardization of ISO TC197", Trans Korean Hydrogen New Energy Soc, Vol. 27, No. 3, 2016, pp. 245-255, doi: https://doi.org/10.7316/KHNES.2016.27.3.245.
  21. ISO 19880-1:2020, "Gaseous hydrogen-Fuelling stations-Part 1: General requirements". Geneva, Switzerland: International Organization for Standardisation; 2020.
  22. J. Lee, S. Kim, and G. Kim, "Preparation of gas standards for quality assurance of hydrogen fuel", Int. J. Hydrogen Energy, Vol. 47, No. 55, 2022, pp. 23471-23481, doi: https://doi.org/10.1016/j.ijhydene.2022.05.141.