DOI QR코드

DOI QR Code

Numerical Model Development of a Microchannel Condenser for Mobile Air-Conditioning Systems

자동차용 에어컨의 마이크로채널 응축기의 수치적 모델 개발

  • ISHAQUE, SHEHRYAR (School of Mechanical Engineering/IEDT, Kyungpook National University) ;
  • ULLAH, NAVEED (School of Mechanical Engineering/IEDT, Kyungpook National University) ;
  • CHOI, JUN-HO (R&D Lab., HIVAC Inc.) ;
  • KIM, MAN-HOE (School of Mechanical Engineering/IEDT, Kyungpook National University)
  • Received : 2022.07.04
  • Accepted : 2022.07.29
  • Published : 2022.08.30

Abstract

This paper presents the numerical model development of a microchannel heat exchanger in mobile air-conditioning and heat pump applications. The model has been developed based on the effectiveness-NTU method using a segment-by-segment modeling approach. State-of-art correlations are used for refrigerant- and air-side heat transfer coefficients and pressure drops. The calculated heat condenser capacities are in good agreement with experimental data, with an average difference of 1.86%. The current model can be used for microchannel condenser simulations under various operating conditions. It is anticipated to improve productivity in designing and optimizing microchannel heat exchangers with folded louver fin geometry.

Keywords

Acknowledgement

This work was partly supported by Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korea government (MOTIE) (Project No. 20015917).

References

  1. S. G. Kandlikar, S. Colin, Y. Peles, S. Garimella, R.F. Pease, J. J. Brandner, and D. B. Tuckerman, "Heat transfer in microchannels-2012 status and research needs", J. Heat Transfer, Vol. 135, No. 9, 2013, pp. 091001, doi: https://doi.org/10.1115/1.4024354.
  2. M. H. Kim and C. W. Bullard, "Performance evaluation of a window room air conditioner with microchannel condensers", J. Energy Resour. Technol., Vol. 124, No. 1, 2002, pp. 47-55, doi: https://doi.org/10.1115/1.1446072.
  3. J. C. S. Garcia, H. Tanaka, N. Giannetti, Y. Sei, K. Saito, M. Houfuku, and R. Takafuji, "Multiobjective geometry optimization of microchannel heat exchanger using real-coded genetic algorithm", Appl. Therm. Eng., Vol. 202, 2022, pp. 117821, doi: https://doi.org/10.1016/j.applthermaleng.2021.117821.
  4. C. H. Kim, H. S. Kim, H. S. Lim, J. W. Choi, I. H. Choi, and N. H. Kim, "Two-phase refrigerant distribution for a horizontal header/horizontal mini-channel tube config- uration", Heat Mass Transf., Vol. 58, 2022, pp. 587-600, doi: https://doi.org/10.1007/s00231-021-03135-5.
  5. A. Saleem and M. H. Kim, "Air-side thermal hydraulic perform ance of m icrochannel heat exchangers w ith different fin configurations", Appl. Therm. Eng., Vol. 125, 2017, pp. 780-789, doi: https://doi.org/10.1016/j.applthermaleng.2017.07.082.
  6. H. Lim, U. Han, and H. Lee, "Design optimization of bare tube heat exchanger for the application to mobile air conditioning systems", Appl. Therm. Eng., Vol. 165, 2020, pp. 114609, doi: https://doi.org/10.1016/j.applthermaleng.2019.114609.
  7. Z. Li, J. Ling, V. Aute, and R. Radermacher, "Investigation of port level refrigerant flow maldistribution in microchannel heat exchanger", 12th IEA Heat Pump Conference, 2017, pp. 1-11. Retrieved from http://hpc2017.org/wp-content/uploads/2017/05/O.3.1.4-Investigation-of-Port-Level-Flow-Maldistribution-in-Microchannel-Heat-Exchanger.pdf.
  8. E. Da Riva and D. Del Col, "Effect of gravity during condensation of R134a in a circular minichannel : VOF simulation of annular condensation", Microgravity Sci. Techn., Vol. 23, No. Suppl 1, 2011, pp. 87-97, doi: https://doi.org/10.1007/s12217-011-9275-4.
  9. E. Da Riva and D. Del Col, "Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel", J. Heat Transfer, Vol. 134, No. 5, 2012, pp. 051019, doi: https://doi.org/10.1115/1.4005710.
  10. H. Ganapathy, A. Shooshtari, K. Choo, S. Dessiatoun, M. Alshehhi, and M. Ohadi, "Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels", Int. J. Heat and Mass Transfer, Vol. 65, 2013, pp. 62-72, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.044.
  11. S. Bortolin, E. Da Riva, and D. Del Col, "Condensation in a square minichannel: application of the VOF method", Heat Transfer Eng., Vol. 35, No. 2, 2014, pp. 193-203, doi: https://doi.org/10.1080/01457632.2013.812493.
  12. P. Gunnasegaran, H. A. Mohammed, N. H. Shuaib, and R. Saidur, "The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes", International Communications in Heat and Mass Transfer, Vol. 37, No. 8, 2010, pp. 1078-1086, doi: https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014.
  13. H. Wang, Z. Chen, and J. Gao, "Influence of geometric parameters on flow and heat transfer performance of micro -channel heat sinks", Applied Thermal Engineering, Vol. 107, 2016, pp. 870-879, doi: https://doi.org/10.1016/j.applthermaleng.2016.07.039.
  14. Y. Chen, C. Zhang, M. Shi, and J. Wu, "Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks", International Communications in Heat and Mass Transfer, Vol. 36, No. 9, 2009, pp. 917-920, doi: https://doi.org/10.1016/j.icheatmasstransfer.2009.06.004.
  15. D. Jing and L. He, "Numerical studies on the hydraulic and thermal performances of microchannels with different crosssectional shapes", International Journal of Heat and Mass Transfer, Vol. 143, 2019, pp. 118604, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118604.
  16. M. H. Kim and C. W. Bullard, "Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers", International Journal of Refrigeration, Vol. 25, No. 3, 2002, pp. 390-400, doi: https://doi.org/10.1016/S0140-7007(01)00025-1.
  17. M. H. Kim, S. Y. Lee, S. S. Mehendale, and R. L. Webb, "Microchannel heat exchanger design for evaporator and condenser applications", Advances in Heat Transfer, Vol. 37, 2003, pp. 297-429, doi: https://doi.org/10.1016/S0065-2717(03)37004-2.
  18. M.V M. Shah, "Improved correlation for heat transfer during condensation in conventional and mini/micro channels", International Journal of Refrigeration, Vol. 98, 2019, pp. 222-237, doi: https://doi.org/10.1016/j.ijrefrig.2018.07.037.
  19. M. H. Kim and C. W. Bullard, "Development of a micro-channel evaporator model for a CO2 air conditioning system", Energy, Vol. 26, No. 10, 2001, pp. 931-948, doi: https://doi.org/10.1016/S0360-5442(01)00042-1.