DOI QR코드

DOI QR Code

Validation of an Analytical Method for Deacetylasperulosidic acid, Total Sugar and Monosaccharide Analysis in Fermented Morinda citrifolia Polysaccharide Powder

발효노니 다당체 분말의 deacetylasperulosidic acid, 총당 및 단당류 분석법 검증

  • Received : 2022.07.04
  • Accepted : 2022.07.26
  • Published : 2022.08.30

Abstract

This study was aimed at validating the analysis methods for deacetylasperulosidic acid (DAA), total sugar, galacturonic acid, glucose, and galactose, which are the indicator components of fermented Morinda citrifolia polysaccharide extract (Vitalbos). We modified the previously reported methods for validating the analytical methods. The specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) were measured using phenol-sulfuric acid method and high-performance liquid chromatography (HPLC). The retention time and spectrum of the standard solution of Vitalbos coincided, confirming the specificity. The calibration curve correlation coefficient (R2), of five indicator components, ranged from 0.9995-0.9998, indicating excellent linearity of 0.99 or more. The intra-day and inter-day precision range of the assay was 0.14-3.01%, indicating a precision of less than 5%. The recovery rate was in the range of 95.13-105.59%, presenting excellent accuracy. The LOD ranged from 0.39 to 0.84 ㎍/mL and the LOQ ranged from 1.18 to 2.55 ㎍/mL. Therefore, the analytical method was validated for DAA, total sugar, galacturonic acid, glucose, and galactose, in Vitalbos. The indicator component content in Vitalbos was determined using a validated method. The contents of DAA, total sugar, galacturonic acid, glucose, and galactose were 2.31±0.06, 475.92±5.95, 72.83±1.05, 71.63±2.44, and 67.30±2.31 mg/g of dry weight, respectively. These results suggest that the developed analytical method is efficient and could contribute to the quality control of Vitalbos, as a healthy functional food material.

본 연구는 발효노니 다당체 추출물(Vitalbos)을 건강기능식품 소재로 활용하기 위해 DAA, 총당 함량, 단당류 3종(galacturonic acid, glucose 및 galactose)을 지표성분으로 설정하고, 지표성분에 대한 효과적인 분석법 설정 및 검증을 위해 수행되었다. 기존에 보고된 분석법 검증 방법을 수정하여 특이성, 직선성, 정밀성, 정확성, 검출한계(LOD) 및 정량한계(LOQ)를 고성능 액체크로마토그래피와 페놀-황산법을 이용하여 측정하였다. 그 결과 DAA 및 단당류 3종의 표준용액과 Vitalbos의 머무름 시간이 일치하였으며 스펙트럼 또한 동일하여 분석법의 특이성을 확인하였다. 지표성분의 검량선 상관계수(R2)는 0.9995-0.9998 범위로 0.99 이상의 우수한 직선성을 나타냈다. Intra-day 및 inter-day 정밀도는 0.14-3.01%의 범위로 5% 미만의 우수한 정밀도를 나타냈고 회수율은 95.13-105.59% 범위에서 우수한 정확도를 보였다. DAA 분석의 LOD와 LOQ는 각각 0.39 ㎍/mL 및 1.18 ㎍/mL이었으며 총당 함량의 LOD 및 LOQ는 각각 0.84 ㎍/mL 및 2.55 ㎍/mL로 측정되었다. 단당류 3종에 대한 LOD는 0.48-0.81 ㎍/mL의 범위였으며, LOQ는 1.45-2.44 ㎍/mL 범위에서 정량분석이 가능한 것으로 나타났다. 분석법 검증 결과, 특이성, 직선성, 정밀성 및 정확성 모두 우수한 분석법임을 검증하였으며, LOD와 LOQ 또한 Vitalbos 분석에 적합하였음을 확인하였다. 검증된 분석법을 이용하여 Vitalbos의 지표 성분 함량을 측정하였을 때, DAA, 총당 함량, galacturonic acid, glucose 및 galactose의 함량은 각각 2.31±0.06 mg/dry weight g, 475.92±5.95 mg/dry weight g, 72.83±1.05 mg/dry weight g, 71.63±2.44 mg/dry weight g 및 67.30±2.31 mg/dry weight g으로 측정되었다. 본 연구에서 검증된 분석법을 사용했을 때 Vitalbos의 지표성분 3종에 대하여 우수한 재현성으로 정량분석이 가능하였으며, 건강기능식품 소재로의 품질관리에 기여할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2020년도 중소벤처기업부의 중소기업기술개발사업(S2840161)의 지원으로 수행된 연구로 이에 감사드립니다.

References

  1. Wang, M.Y., West, B.J., Jensen, C.J., Nowicki, D., Su, C., Palu, A.K., Anderson, G., Morinda citrifolia (Noni): a literature review and recent advances in Noni research. Acta Pharmacol. Sin., 23, 1127-1141 (2002).
  2. Dixon, A.R., McMillen, H., Etkin, N.L., Ferment this: the transformation of Noni, a traditional Polynesian medicine (Morinda citrifolia, Rubiaceae). Econ. Bot., 53, 51-68 (1999). https://doi.org/10.1007/BF02860792
  3. Ramamoorthy, P.K., Bono, A., Antioxidant activity, total phenolic and flavonoid content of Morinda citrifolia fruit extracts from various extraction processes. J. Eng. Sci. Technol., 2, 70-80 (2007).
  4. Wang, R., Wang, L., Zhang, L., Wan, S., Li, C., Liu, S., Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.) fruit extract. Food Chem., 377, 131989 (2022).
  5. WANG, M.Y., Su, C., Cancer preventive effect of Morinda citrifolia (Noni). Ann. N. Y. Acad. Sci., 952, 161-168 (2001). https://doi.org/10.1111/j.1749-6632.2001.tb02737.x
  6. Olatunde, O.O., Benjakul, S., Huda, N., Zhang, B., Deng, S., Ethanolic Noni (Morinda citrifolia L.) leaf extract dechlorophyllised using sedimentation process: Antioxidant, antibacterial properties and efficacy in extending the shelf-life of striped catfish slices. Int. J. Food Sci. Technol., 56, 2804-2819 (2021). https://doi.org/10.1111/ijfs.14917
  7. Wang, M.Y., Nowicki, D., Anderson, G., Jensen, J., West, B., Liver protective effects of Morinda citrifolia (Noni). Plant Foods Hum. Nutr., 63, 59-63 (2008). https://doi.org/10.1007/s11130-008-0070-3
  8. Hong, Y.H., Yi, Y.S., Han, S.Y., Aziz, N., Kim, H.G., Park, S.H., Hossain, M.A., Baik, K.S., Choi, S.Y., Lee, J.S., Kim, J.H., Cho, J.Y., Morinda citrifolia noni water extract enhances innate and adaptive immune responses in healthy mice, ex vivo, and in vitro. Phytother. Res., 33, 676-689 (2019). https://doi.org/10.1002/ptr.6256
  9. Choi, S.I., Kwon, H.Y., La, I.J., Jo, Y.H., Han, X., Men, X., Lee, S.J., Kim, Y.D., Seong, G.S., Lee, O.H., Development and validation of an analytical method for deacetylasperulo-sidic acid, asperulosidic acid, scopolin, asperuloside and scopoletin in fermented Morinda citrifolia L.(Noni). Separations, 8, 80 (2021).
  10. Esakkimuthu, S., Nagulkumar, S., Darvin, S. S., Buvanes-varagurunathan, K., Sathya, T.N., Navaneethakrishnan, K.R., Kumaravel, T.S., Murugan, S.S., Shirota, O., Balakrishna, K., Pandikumar, P., Ignacimuthu, S., Antihyperlip-idemic effect of iridoid glycoside deacetylasperulosidic acid isolated from the seeds of Spermacoce hispida L.-A traditional antiobesity herb. J. Ethnopharmacol., 245, 112170 (2019).
  11. Choi, S.I., Han, X., Men, X., Lee, S.J., Kim, Y.D., La, I.J., Seong, G.S., Lee, O.H., Enhancement of Immune Activities of Fermented Morinda citrifolia L.(Noni) and Six Marker Compounds. J. Food Hyg. Saf., 37, 29-37 (2022). https://doi.org/10.13103/JFHS.2022.37.1.29
  12. Sundaram, R., Naresh, R., Shanthi, P., Sachdanandam, P., Antihyperglycemic effect of iridoid glucoside, isolated from the leaves of Vitex negundo in streptozotocin-induced diabetic rats with special reference to glycoprotein components. Phytomedicine, 19, 211-216 (2012). https://doi.org/10.1016/j.phymed.2011.10.006
  13. Sun, W., Hu, W., Meng, K., Yang, L., Zhang, W., Song, X., Qu, X., Zhang, Y., Ma, L., Fan, Y., Activation of macro-phages by the ophiopogon polysaccharide liposome from the root tuber of Ophiopogon japonicus. Int. J. Biol. Macromol., 91, 918-925 (2016). https://doi.org/10.1016/j.ijbiomac.2016.06.037
  14. Wang, Y.Q., Mao, J.B., Zhou, M.Q., Jin, Y.W., Lou, C.H., Dong, Y., Shou, D., Hu, Y., Yang, B., Jin, C.Y., Shi, H.C., Zhao, H.J., Wen, C.P., Polysaccharide from Phellinus Igniarius activates TLR4-mediated signaling pathways in macro-phages and shows immune adjuvant activity in mice. Int. J. Biol. Macromol., 123, 157-166 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.066
  15. Shin, S., Kim, S.H., Lee, H.S., Kwon, D.J., Jeon, S.H., Effects of Corn-Derived Arabinoxylan-Containing Polysaccharides on Innate Immune Activity. J. Korean Soc. Food Sci. Nutr., 49, 119-126 (2020). https://doi.org/10.3746/jkfn.2020.49.2.119
  16. Im, S.A., Park, C.S., Lee, C.K., Immunoaugmenting Activity of Acemannan, the Polysaccharides Isolated from Aloe vera Gel. Kor. J. Pharmacogn., 47, 103-109 (2016).
  17. Yang, S.J., Lee, S.Y., Lee, H., Park, Y.C., Choi, S.K., Yu, C.Y., Chung, I.M., Lim, J.D., Adjuvant Effect of Polysaccharides from Aboveground Parts of Astragalus membranaceus. Korean J. Medicinal Crop. Sci., 24, 408-419 (2016). https://doi.org/10.7783/KJMCS.2016.24.5.408
  18. Kim, S.W., Kim, E.S., Studies on the Immunomodulating Effects of Polysaccharide Extracted from Ganoderma lucidum on Macrophage. J. Korean Soc. Food Sci. Nutr., 26, 148-153 (1997).
  19. Kim, K.H., Jung, I.S., Chung, H.Y., Jo, S.K., Yun, Y.S., Preclinical Evaluation of Polysaccharides Extracted from Korean Red-ginseng as an Antineoplastic Immunostimulator. Korean J. Ginseng Sci., 21, 78-84 (1997).
  20. Choi, S.I., La, I.J., Han, X., Men, X., Lee, S.J., Oh, G., Kwon, H.Y., Kim, Y.D., Seong, G.S., Kim, S.H., Lee, O.H., Immunomodulatory Effect of Polysaccharide from Fermented Morinda citrifolia L. (Noni) on RAW 264.7 Macrophage and Balb/c Mice. Foods., 11, 1925 (2022).
  21. Kim, S.H., Seong, G.S., Choung, S.Y., Fermented Morinda citrifolia (Noni) alleviates DNCB-induced atopic dermatitis in NC/Nga mice through modulating immune balance and skin barrier function. Nutrients, 12, 249 (2020).
  22. Saha, A.K., Brewer, C.F., Determination of the concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method. Carbohydr. Res., 254, 157-167 (1994). https://doi.org/10.1016/0008-6215(94)84249-3
  23. Honda, S., Togashi, K., Taga, A., Unusual separation of 1-phenyl-3-methyl-5-pyrazolone derivatives of aldoses by capillary zone electrophoresis. J. Chromatogr. A, 791, 307-311 (1997). https://doi.org/10.1016/S0021-9673(97)00803-0
  24. ICH Harmonised Tripartite Guideline. 2005. Validation of analytical procedures: text and methodology Q2(R1). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, p 1-13.
  25. Jin, M., Wang, Y., Yang, X., Yin, H., Nie, S., Wu, X., Structure characterization of a polysaccharide extracted from noni (Morinda citrifolia L.) and its protective effect against DSS-induced bowel disease in mice. Food Hydrocoll., 90, 189-197 (2019). https://doi.org/10.1016/j.foodhyd.2018.11.049
  26. Sousa, S.G., Oliveira, L.A., de Aguiar Magalhaes, D., de Brito, T.V., Batista, J.A., Pereira, C.M.C., de Souza Costa, M., Mazulo, J.C.R., de Carvalho Filgueiras, M., Vasconselos, D.F.P., da Silva, D.A., Barros, F.C.N., Sombra, V.G., Freitas, A.L.P., de Paula, R.C.M., de Andrade Feitosa, J.P., dos Reis Barbosa, A.L., Chemical structure and anti-inflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni). Carbohydr. Polym., 197, 515-523 (2018). https://doi.org/10.1016/j.carbpol.2018.06.042
  27. Son, H.J., Shim, J.Y., Ahn, J.Y., Yun, Y.S., Song, J.Y., Repre-sentative Parameter of Immunostimulatory Ginseng Poly-saccharide to Predict Radioprotection. J. Radiat. Prot. Res., 33, 99-104 (2008).
  28. Zhang, M., Wang, G., Lai, F., Wu, H., Structural characterization and immunomodulatory activity of a novel polysac-charide from Lepidium meyenii. J. Agric. Food Chem., 64, 1921-1931 (2016). https://doi.org/10.1021/acs.jafc.5b05610
  29. Chen, J.R., Yang, Z.Q., Hu, T.J., Yan, Z.T., Niu, T.X., Wang, L., Cui, D.A., Wang, M., Immunomodulatory activity in vitro and in vivo of polysaccharide from Potentilla anserina. Fitoterapia, 81, 1117-1124 (2010). https://doi.org/10.1016/j.fitote.2010.07.009