DOI QR코드

DOI QR Code

Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review

  • Ali, Qasim (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • Ma, Sen (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • La, Shaokai (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • Guo, Zhiguo (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • Liu, Boshuai (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • Gao, Zimin (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • Farooq, Umar (Department of Poultry Science, University of Agriculture Faisalabad) ;
  • Wang, Zhichang (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • Zhu, Xiaoyan (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • Cui, Yalei (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • Li, Defeng (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) ;
  • Shi, Yinghua (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University)
  • Received : 2021.12.19
  • Accepted : 2022.03.18
  • Published : 2022.10.01

Abstract

The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.

Keywords

Acknowledgement

We thank teacher Sen Ma (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) for his constructive reading and comments.

References

  1. Maki JJ, Bobeck EA, Sylte MJ, Looft T. Eggshell and environmental bacteria contribute to the intestinal microbiota of growing chickens. J Anim Sci Biotechnol 2020;11:60. https://doi.org/10.1186/s40104-020-00459-w
  2. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 2013; 14:676-84. https://doi.org/10.1038/ni.2640
  3. Qin S, Zhang K, Applegate TJ, et al. Dietary administration of resistant starch improved caecal barrier function by enhancing intestinal morphology and modulating microbiota composition in meat duck. Br J Nutr 2020;123:172-81. https://doi.org/10.1017/S0007114519002319
  4. Wu J, Ma N, Johnston LJ, Ma X. Dietary nutrients mediate intestinal host defense peptide expression. Advan Nutr 2020; 11:92-102. https://doi.org/10.1093/advances/nmz057
  5. Li H, Zhao L, Liu S, Zhang Z, Wang X, Lin H. Propionate inhibits fat deposition via affecting feed intake and modulating gut microbiota in broilers. Poult Sci 2021;100:235-45. https://doi.org/10.1016/j.psj.2020.10.009
  6. Jozefiak D, Rutkowski A, Kaczmarek S, Jensen BB, Engberg RM, Hojberg O. Effect of β-glucanase and xylanase supplementation of barley-and rye-based diets on caecal microbiota of broiler chickens. Br Poult Sci 2010;51:546-57. https://doi.org/10.1080/00071668.2010.507243
  7. Biasato I, Ferrocino I, Biasibetti E, et al. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet Res 2018;14:383. https://doi.org/10.1186/s12917-0181690-y
  8. Prakatur I, Miskulin M, Pavic M, et al. Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals 2019;9:301. https://doi.org/10.3390/ani9060301
  9. Mahmood T, Guo Y. Dietary fiber and chicken microbiome interaction: Where will it lead to? Anim Nutr 2020;6:1-8. https://doi.org/10.1016/j.aninu.2019.11.004
  10. Goto Y. Epithelial cells as a transmitter of signals from commensal bacteria and host immune cells. Front Immunol 2019;10:2057. https://doi.org/10.3389/fimmu.2019.02057
  11. Blank B, Schlecht E, Susenbeth A. Effect of dietary fibre on nitrogen retention and fibre associated threonine losses in growing pigs. Arch Anim Nutr 2012;66:86-101. https://doi.org/10.1080/1745039X.2012.663669
  12. Deehan EC, Duar RM, Armet AM, Perez-Munoz ME, Jin M, Walter J. Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microb Spect 2017;5:5.5.04. https://doi.org/10.1128/microbiolspec.BAD-0019-2017
  13. Pellegrini N, Vittadini E, Fogliano V. Designing food structure to slow down digestion in starch-rich products. Curr Opin Food Sci 2020;32:50-7. https://doi.org/10.1016/j.cofs.2020.01.010
  14. Haenen D, Zhang J, Souza da Silva C, et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr 2013;143:274-83. https://doi.org/10.3945/jn.112.169672
  15. Song J, Li Q, Everaert N, et al. Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection. J Anim Sci 2020;98:skz396. https://doi.org/10.1093/jas/skz396
  16. Shang Y, Kumar S, Thippareddi H, Kim WK. Effect of dietary fructooligosaccharide (FOS) supplementation on ileal microbiota in broiler chickens. Poult Sci 2018;97:3622-34. https://doi.org/10.3382/ps/pey131
  17. Ebrahimi SH, Valizadeh R, Heidarian Miri V. Rumen microbial community of Saanen goats adapted to a high-fiber diet in the Northeast of Iran. Iran J Appl Anim Sci 2018;8:271-9.
  18. De Maesschalck C, Eeckhaut V, Maertens L, et al. Amorphous cellulose feed supplement alters the broiler caecal microbiome. Poult Sci 2019;98:3811-7. https://doi.org/10.3382/ps/pez090
  19. Tian D, Xu X, Peng Q, et al. In vitro fermentation of arabinoxylan from oat (Avena sativa L.) by Pekin duck intestinal microbiota. 3 Biotech 2019;9:54. https://doi.org/10.1007/s13205-019-1571-5
  20. Nursiam I, Ridla M, Hermana W, Nahrowi. Effect of fiber source on growth performance and gastrointestinal tract in broiler chickens. In: IOP Conference Series. Earth Environ Sci 2021;788:012058. https://doi.org/10.1088/1755-1315/788/1/012058
  21. Mateos GG, Jimenez-Moreno E, Serrano MP, Lazaro RP. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J Appl Poult Res 2012;21:156-74. https://doi.org/10.3382/japr.2011-00477
  22. Rezaei M, Karimi Torshizi M, Wall H, Ivarsson E. Body growth, intestinal morphology and microflora of quail on diets supplemented with micronised wheat fibre. Br Poult Sci 2018;59:422-9. https://doi.org/10.1080/00071668.2018.1460461
  23. Chiou PW, Lu T, Hsu J, Yu B. Effect of different sources of fiber on the intestinal morphology of domestic geese. AsianAustralas J Anim Sci 1996;9:539-50. https://doi.org/10.5713/ajas.1996.539
  24. Teimouri Yansari A. Chemical composition, physical characteristics, rumen degradability of NDF and NDF fractionation in rice straw as an effective fibre in ruminants. Ir J Appl Anim Sci 2017;7:221-8.
  25. Pourabedin M, Guan L, Zhao X. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome 2015;3:15. https://doi.org/10.1186/s40168-015-0079-4
  26. Rehman H, Vahjen W, Kohl-Parisini A, Ijaz A, Zentek J. Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. World's Poult Sci J 2009;65:75-90. https://doi.org/10.1017/S0043933909000063
  27. Umu OC, Frank JA, Fangel JU, et al. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome 2015;3:16. https://doi.org/10.1186/s40168-015-0078-5
  28. Liu G, Zhao Y, Cao S, et al. Relative bioavailability of selenium yeast for broilers fed a conventional corn-soybean meal diet. J Anim Physiol Anim Nutr 2020;104:1052-66. https://doi.org/10.1111/jpn.13262
  29. Yamabhai M, Sak-Ubol S, Srila W, Haltrich D. Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol 2016;36:32-42. https://doi.org/10.3109/07388551.2014.923372
  30. Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. Extensive microbial and functional diversity within the chicken cecal microbiome. PloS One 2014;9:e91941. https://doi.org/10.1371/journal.pone.0091941
  31. Idan F. The role of feed processing and fiber addition on improving the nutrition and growth performance of broilers. Manhattan, KS, USA: Kansas State University; 2019.
  32. De la Fuente G, Yanez-Ruiz DR, Seradj A, Balcells J, Belanche A. Methanogenesis in animals with foregut and hindgut fermentation: a review. Anim Prod Sci 2019;59:2109-22. https://doi.org/10.1071/AN17701
  33. Duangnumsawang Y, Zentek J, Boroojeni FG. Development and functional properties of intestinal mucus layer in poultry. Front Immunol 2021;12: 745849. https://doi.org/10.3389/fimmu.2021.745849
  34. Saqui-Salces M, Huang Z, Vila MF, et al. Modulation of intestinal cell differentiation in growing pigs is dependent on the fiber source in the diet. J Anim Sci 2017;95:1179-90. https://doi.org/10.2527/jas.2016.0947
  35. Kef S, Arslan S. The effects of different dietary fiber use on the properties of kefir produced with cow's and goat's milk. J Food Proc Preserv 2021;45:e15467. https://doi.org/10.1111/jfpp.15467
  36. McRorie Jr JW, McKeown NM. Understanding the physics of functional fibers in the gastrointestinal tract: an evidencebased approach to resolving enduring misconceptions about insoluble and soluble fiber. J Acad Nutr Diet 2017;117:25164. https://doi.org/10.1016/j.jand.2016.09.021
  37. Wellington MO, Hamonic K, Krone JEC, Htoo JK, Van Kessel AG, Columbus DA. Effect of dietary fiber and threonine content on intestinal barrier function in pigs challenged with either systemic E. coli lipopolysaccharide or enteric Salmonella Typhimurium. J Anim Sci Biotechnol 2020;11:38. https://doi.org/10.1186/s40104-020-00444-3
  38. Schroeder BO, Birchenough GM, Stahlman M, et al. Bifidobacteria or fiber protects against diet-induced microbiotamediated colonic mucus deterioration. Cell Host Microb 2018;23:27-40. https://doi.org/10.1016/j.chom.2017.11.004
  39. Tang Q, Tan P, Ma N, Ma X. Physiological functions of threonine in animals: beyond nutrition metabolism. Nutrients 2021;13:2592. https://doi.org/10.3390/nu13082592
  40. Hansson GC, Johansson MEV. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 2010;1:51-4. https://doi.org/10.4161/gmic.1.1.10470
  41. Yin L, Yang H, Li J, et al. Pig models on intestinal development and therapeutics. Amino Acids 2017;49:2099-106. https://doi.org/10.1007/s00726-017-2497-z
  42. Barker N, Van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003-7. https://doi.org/10.1038/nature06196
  43. Tetteh PW, Basak O, Farin HF, et al. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 2016;18:203-13. https://doi.org/10.1016/j.stem.2016.01.001
  44. Ben-Shahar Y, Abassi Z, Shefer HK, Pollak Y, Bhattacharya U, Sukhotnik I. Accelerated intestinal epithelial cell turnover correlates with stimulated bmp signaling cascade following intestinal ischemia-reperfusion in a rat. Eur J Pediatr Surg 2020;30:64-70. https://doi.org/10.1055/s-0039-1700550
  45. Giepmans BNG, van IJzendoorn SCD. Epithelial cell-cell junctions and plasma membrane domains. Biochim Biophy Acta (BBA)-Biomembranes 2009;1788:820-31. https://doi.org/10.1016/j.bbamem.2008.07.015
  46. Hossain Z, Hirata T. Molecular mechanism of intestinal permeability: interaction at tight junctions. Mol Biosyst 2008;4: 1181-5. https://doi.org/10.1039/b800402a
  47. Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014;15:225-42. https://doi.org/10.1038/nrm3775
  48. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58:1091-103. https://doi.org/10.1136/gut.2008.165886
  49. Khurana S, George SP. Regulation of cell structure and function by actin-binding proteins: villin's perspective. FEBS Lett 2008;582:2128-39. https://doi.org/10.1016/j.febslet.2008.02.040
  50. Dhekne HS, Pylypenko O, Overeem AW, et al. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: a mutation update. Hum Mutat 2018;39:333-44. https://doi.org/10.1002/humu.23386
  51. Mazzolini R, Dopeso H, Mateo-Lozano S, Arango D. Brush border myosin Ia has tumor suppressor activity in the intestine. Proc Natl Acad Sci USA 2012;109:1530-5. https://doi.org/10.1073/pnas.1108411109
  52. McConnell RE, Tyska MJ. Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J Cell Biol 2007;177:671-81. https://doi.org/10.1083/jcb.200701144
  53. McConnell RE, Higginbotham JN, Shifrin DA, et al. The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 2009;185:1285-98. https://doi.org/10.1083/jcb.200902147
  54. Shifrin DA, Jr, Tyska MJ. Ready...aim...fire into the lumen: a new role for enterocyte microvilli in gut host defense. Gut Microbes 2012;3:460-2. https://doi.org/10.4161/gmic.21247
  55. Weerasooriya V, Rennie MJ, Anant S, Alpers DH, Patterson BW, Klein S. Dietary fiber decreases colonic epithelial cell proliferation and protein synthetic rates in human subjects. Am J physiol Endocrinol Metab 2006;290:E1104-8. https://doi.org/10.1152/ajpendo.00557.2005
  56. Meddings J. The significance of the gut barrier in disease. Gut 2008;57:438-40. https://doi.org/10.1136/gut.2007.143172
  57. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020;17:223-37. https://doi.org/10.1038/s41575019-0258-z
  58. Gracia MI, Sanchez J, Millan C, et al. Effect of feed form and whole grain feeding on gastrointestinal weight and the prevalence of campylobacter jejuni in broilers orally infected. PloS One 2016;11:e0160858. https://doi.org/10.1371/journal.pone.0160858
  59. Walugembe M, Hsieh JC, Koszewski NJ, Lamont SJ, Persia ME, Rothschild MF. Effects of dietary fiber on cecal shortchain fatty acid and cecal microbiota of broiler and layinghen chicks. Poult Sci 2015;94:2351-9. https://doi.org/10.3382/ps/pev242
  60. Jozefiak D, Rutkowski A, Fratczak M, Boros D. The effect of dietary fibre fractions from different cereals and microbial enzyme supplementation on performance, ileal viscosity and short-chain fatty acid concentrations in the caeca of broiler chickens. J Anim Feed Sci 2004;13:487-96. https://doi.org/10.22358/jafs/67618/2004
  61. Jamroz D, Jakobsen K, Bach Knudsen KE, Wiliczkiewicz A, Orda J. Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp Biochem Physiol A Mol Integr Physiol 2002;131:657-68. https://doi.org/10.1016/s10956433(01)00517-7
  62. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Ann Rev Physiol 2009;71:241-60. https://doi.org/10.1146/annurev.physiol.010908.163145
  63. Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 1996;62:1589-92. https://doi.org/10.1128/aem.62.5.1589-1592.1996
  64. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 2010;23:366-84. https://doi.org/10.1017/s0954422410000247
  65. Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta Proteins Proteom 2008;1784:1873-98. https://doi.org/10.1016/j.bbapap.2008.08.012
  66. Reichardt N, Duncan SH, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 2014;8:1323-35. https:// doi.org/10.1038/ismej.2014.14
  67. Vidyasagar S, Barmeyer C, Geibel J, Binder HJ, Rajendran VM. Role of short-chain fatty acids in colonic HCO3 secretion. Am J Physiol Gastrointest Liver Physiol 2005;288:G1217-26. https://doi.org/10.1152/ajpgi.00415.2004
  68. Hadjiagapiou C, Schmidt L, Dudeja PK, Layden TJ, Ramaswamy K. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 2000;279:G775-80. https://doi.org/10.1152/ajpgi.2000.279.4.G775
  69. Takebe K, Nio J, Morimatsu M, et al. Histochemical demonstration of a Na+-coupled transporter for short-chain fatty acids (Slc5a8) in the intestine and kidney of the mouse. Biomed Res 2005;26:213-21. https://doi.org/10.2220/biomedres.26.213
  70. Ganapathy V, Gopal E, Miyauchi S, Prasad PD. Biological functions of SLC5A8, a candidate tumour suppressor. Biochem Soc Trans 2005;33:237-40. https://doi.org/10.1042/bst0330237
  71. Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 2004;447:61928. https://doi.org/10.1007/s00424-003-1067-2
  72. Shin HJ, Anzai N, Enomoto A, et al. Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 2007;45:1046-55. https://doi.org/10.1002/hep.21596
  73. Sellin JH. SCFAs: The enigma of weak electrolyte transport in the colon. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society 1999;14:58-64. https://doi.org/10.1152/physiologyonline.1999.14.2.58
  74. Kearney JM, McElhone S. Perceived barriers in trying to eat healthier-results of a pan-EU consumer attitudinal survey. Br J Nutr 1999;81:S133-S7. https://doi.org/10.1017/S0007114599000987
  75. M'Sadeq SA, Wu S, Swick RA, Choct M. Towards the control of necrotic enteritis in broiler chickens with in-feed antibiotics phasing-out worldwide. Anim Nutr 2015;1:1-11. https://doi.org/10.1016/j.aninu.2015.02.004
  76. Vermeulen K, Verspreet J, Courtin CM, et al. Reduced-particlesize wheat bran is efficiently colonized by a lactic acid-producing community and reduces levels of Enterobacteriaceae in the cecal microbiota of broilers. Appl Environ Microbiol 2018;84:e01343-18. https://doi.org/10.1128/AEM.01343-18
  77. Liu H, Ivarsson E, Dicksved J, Lundh T, Lindberg JE. Inclusion of chicory (Cichorium intybus L.) in pigs' diets affects the intestinal microenvironment and the gut microbiota. Appl Environ Microbiol 2012;78:4102-9. https://doi.org/10.1128/AEM.07702-11
  78. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278:11312-9. https://doi.org/10.1074/jbc.M211609200
  79. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 2014;5:202-7. https://doi.org/10.4161/gmic.27492
  80. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Advan Immunol 2014;121:91-119. https://doi.org/10.1016/b978-0-12-800100-4.00003-9
  81. Halnes I, Baines KJ, Berthon BS, MacDonald-Wicks LK, Gibson PG, Wood LG. Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma. Nutrients 2017;9:57. https://doi.org/10.3390/nu9010057
  82. Ohira H, Fujioka Y, Katagiri C, et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb 2013;20: 425-42. https://doi.org/10.5551/jat.15065
  83. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014;20:159-66. https://doi.org/10.1038/nm.3444
  84. Huang W, Zhou L, Guo H, Xu Y, Xu Y. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism 2017;68:20-30. https://doi.org/10.1016/j.metabol.2016.11.006
  85. Kim CH. Microbiota or short-chain fatty acids: which regulates diabetes? Cell Mol Immunol 2018;15:88-91. https://doi.org/10.1038/cmi.2017.57
  86. Digby JE, Martinez F, Jefferson A, et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arterioscler Thromb Vasc Biol 2012;32:669-76. https://doi.org/10.1161/ATVBAHA.111.241836
  87. Borthakur A, Priyamvada S, Kumar A, et al. A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1. Am J Physiol Gastrointest Liver Physiol 2012;303:G1126-G33. https://doi.org/10.1152/ajpgi.00308.2012
  88. Aune D, Chan DS, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and doseresponse meta-analysis of prospective studies. BMJ 2011; 343:d6617. https://doi.org/10.1136/bmj.d6617
  89. Singh N, Thangaraju M, Prasad PD, et al. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J Biol Chem 2010;285: 27601-8. https://doi.org/10.1074/jbc.M110.102947
  90. Wu J, Zhou Z, Hu Y, Dong S. Butyrate-induced GPR41 activation inhibits histone acetylation and cell growth. J Genet Genomics 2012;39:375-84. https://doi.org/10.1016/j.jgg.2012.05.008
  91. Smith PM, Howitt MR, Panikov N, Michaud M, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341:569-73. https://doi.org/10.1126/science.1241165
  92. Usami M, Kishimoto K, Ohata A, et al. Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res (New York, NY) 2008;28:321-8. https://doi.org/10.1016/j.nutres.2008.02.012
  93. Kendrick SF, O'Boyle G, Mann J, et al. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 2010;51:1988-97. https://doi.org/10.1002/hep.23572
  94. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 2014;111:2247-52. https://doi.org/10.1073/pnas.1322269111
  95. Lucas JL, Mirshahpanah P, Haas-Stapleton E, Asadullahb K, Zollnerb TM, Numerof RP. Induction of Foxp3+ regulatory T cells with histone deacetylase inhibitors. Cell Immunol 2009;257:97-104. https://doi.org/10.1016/j.cellimm.2009.03.004
  96. Denyer MP, Pinheiro DY, Garden OA, Shepherd AJ. Missed, not missing: phylogenomic evidence for the existence of avian FoxP3. PLoS One 2016;11:e0150988. https://doi.org/10.1371/journal.pone.0150988
  97. Borrelli L, Coretti L, Dipineto L, et al. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci Rep 2017;7:16269. https://doi.org/10.1038/s41598-017-16560-6
  98. Friedman M, Juneja VK. Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 2010;73: 1737-61. https://doi.org/10.4315/0362-028X-73.9.1737
  99. Schedle K, Plitzner C, Ettle T, Zhao L, Domig KJ, Windisch W. Effects of insoluble dietary fibre differing in lignin on performance, gut microbiology, and digestibility in weanling piglets. Arch Anim Nutr 2008;62:141-51. https://doi.org/10.1080/17450390801892617
  100. De Angelis M, Montemurno E, Vannini L, et al. Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol 2015;81:7945-56. https:// doi.org/10.1128/AEM.02507-15
  101. Plesea Condratovici C, Bacarea V, Pique N. Xyloglucan for the treatment of acute gastroenteritis in children: results of a randomized, controlled, clinical trial. Gastroenterol Res Pract 2016; 2016: 6874207. https://doi.org/10.1155/2016/6874207
  102. Brufau MT, Martin-Venegas R, Guerrero-Zamora AM, et al. Dietary β-galactomannans have beneficial effects on the intestinal morphology of chickens challenged with Salmonella enterica serovar Enteritidis. J Anim Sci 2015;93:238-46. https://doi.org/10.2527/jas.2014-7219
  103. Azcarate-Peril MA, Butz N, Cadenas MB, et al. An attenuated Salmonella enterica serovar Typhimurium strain and galactooligosaccharides accelerate clearance of Salmonella infections in poultry through modifications to the gut microbiome. Appl Environ Microbiol 2018;84:e02526-17. https://doi.org/10.1128/AEM.02526-17
  104. Pourabedin M, Zhao X. Prebiotics and gut microbiota in chickens. FEMS Microbiol Lett 2015;362:fnv122. https://doi.org/10.1093/femsle/fnv122
  105. Fu X, Li R, Zhang T, Li M, Mou H. Study on the ability of partially hydrolyzed guar gum to modulate the gut microbiota and relieve constipation. J Food Biochem 2019;43:e12715. https://doi.org/10.1111/jfbc.12715
  106. Ahallil H, Abdullah A, Maskat MY, Sarbini SR. Fermentation of gum arabic by gut microbiota using in vitro colon model. In: AIP Conference Proceedings. AIP Publishing LLC; 2019. p. 050004. https://doi.org/10.1063/1.5111252
  107. Singh Y, Molan AL, Ravindran V. Influence of the method of whole wheat inclusion on performance and caecal microbiota profile of broiler chickens. J Appl Anim Nutr 2019;7:E4. https://doi.org/10.1017/jan.2019.3
  108. Galan JE, Curtiss R, 3rd. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun 1990;58:1879-85. https://doi.org/10.1128/iai.58.6.1879-1885.1990
  109. Bailey JS, Blankenship LC, Cox NA. Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poult Sci 1991;70:2433-8. https://doi.org/10.3382/ps.0702433
  110. Kim JC, Mullan BP, Hampson DJ, Pluske JR. Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhoea and reduces indices of protein fermentation in the gastrointestinal tract. Br J Nutr 2008;99:1217-25. https://doi.org/10.1017/S0007114507868462
  111. Halas D, Hansen CF, Hampson DJ, Mullan BP, Wilson RH, Pluske JR. Effect of dietary supplementation with inulin and/or benzoic acid on the incidence and severity of postweaning diarrhoea in weaner pigs after experimental challenge with enterotoxigenic Escherichia coli. Arch Anim Nutr 2009; 63:267-80. https://doi.org/10.1080/17450390903020414
  112. Chen H, Mao X, He J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br J Nutr 2013;110:1837-48. https://doi.org/10.1017/s0007114513001293
  113. Wan R, Camandola S, Mattson MP. Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J Nutr 2003;133:1921-9. https://doi.org/10.1093/jn/133.6.1921
  114. Hansen CF, Phillips ND, La T, et al. Diets containing inulin but not lupins help to prevent swine dysentery in experimentally challenged pigs. J Anim Sci 2010;88:3327-36. https://doi.org/10.2527/jas.2009-2719
  115. Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461:1282-6. https://doi.org/10.1038/nature08530
  116. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Shortchain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013;145:396-406. e10. https://doi.org/10.1053/j.gastro.2013.04.056
  117. Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Nat Acad Sci 2013;110:4410-5. https://doi.org/10.1073/pnas.1215927110