Acknowledgement
We appreciate the support provided by Ecolovo Group (Jiangsu, China) for providing the cherry valley duck embryo and Professor Song from Yangzhou University in China for providing 293T cell line.
References
- Nematbakhsh S, Chong PP, Selamat J, Nordin N, Idris LH, Abdull Razis AF. Molecular regulation of lipogenesis, adipogenesis and fat deposition in chicken. Genes (Basel) 2021; 12:414. https://doi.org/10.3390/genes12030414
- Ding SR, Li GS, Chen SR, et al. Comparison of carcass and meat quality traits between lean and fat Pekin ducks. Anim Biosci 2021;34:1193-201. https://doi.org/10.5713/ajas.19.0612
- Frayn KN, Arner P, Yki-Jarvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 2006;42,89-103. https://doi.org/10.1042/bse0420089
- Lee J, Choi J, Scafidi S, Wolfgang MJ. Hepatic fatty acid oxidation restrains systemic catabolism during starvation. Cell Rep 2016;16:201-12. https://doi.org/10.1016/j.celrep.2016.05.062
- Koutnikova H, Auwerx J. Regulation of adipocyte differentiation. Ann Med 2001;33:556-61. https://doi.org/10.3109/07853890108995966
- Wang G, Kim WK, Cline MA, Gilbert ER. Factors affecting adipose tissue development in chickens: a review. Poult Sci 2017;96:3687-99. https://doi.org/10.3382/ps/pex184
- Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998;78:783-809. https://doi.org/10.1152/physrev.1998.78.3.783
- Wang SS, Zhang Y, Xu Q, et al. The differentiation of preadipocytes and gene expression related to adipogenesis in ducks (Anas platyrhynchos). PLoS One 2018;13:e0196371. https://doi.org/10.1371/journal.pone.0196371
- Shang ZC, Guo L, Wang N, Shi H, Wang YX, Li H. Oleate promotes differentiation of chicken primary preadipocytes in vitro. Biosci Rep 2014;34:e00093. https://doi.org/10.1042/BSR20130120
- Shi CM, Huang FY, Gu XM, et al. Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget 2016;7:40830-45. https://doi.org/10.18632/oncotarget.8518
- Zhang R, Wang D, Xia ZY, et al. The role of microRNAs in adipocyte differentiation. Front Med 2013;7:223-30. https://doi.org/10.1007/s11684-013-0252-8
- Sun GR, Li F, Ma XF, et al. gga-miRNA-18b-3p inhibits intramuscular adipocytes differentiation in chicken by targeting the ACOT13 gene. Cells 2019;8:556. https://doi.org/10.3390/cells8060556
- Li F, Li DH, Zhang M, et al. miRNA-223 targets the GPAM gene and regulates the differentiation of intramuscular adipocytes. Gene 2019;685:106-13. https://doi.org/10.1016/j.gene.2018.10.054
- Li GX, Fu SY, Chen Y, et al. MicroRNA-15a regulates the differentiation of intramuscular preadipocytes by targeting ACAA1, ACOX1 and SCP2 in chickens. Int J Mol Sci 2019; 20:4063. https://doi.org/10.3390/ijms20164063
- Wang WS, Cheng M, Qiao SP, Wang YX, Li H, Wang N. Gga-miR-21 inhibits chicken pre-adipocyte proliferation in part by down-regulating Kruppel-like factor 5. Poult Sci 2017; 96:200-10. https://doi.org/10.3382/ps/pew281
- Cheng F, Yuan G, He J, Shao Y, Zhang J, Guo X. Aberrant expression of miR-214 is associated with obesity-induced insulin resistance as a biomarker and therapeutic. Diagn Pathol 2020;15:18. https://doi.org/10.1186/s13000-019-0914-1
- Xi FX, Wei CS, Xu YT, et al. MicroRNA-214-3p targeting Ctnnb1 promotes 3T3-L1 preadipocyte differentiation by interfering with the Wnt/β-Catenin signaling pathway. Int J Mol Sci 2019;20:1816. https://doi.org/10.3390/ijms20081816
- Wang LD, Liang WS, Wang SS, et al. Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation. PLoS One 2020;15:e0236069. https://doi.org/10.1371/journal.pone.0236069
- Cao FD, Zhan JL, Chen XF, Zhang K, Lai RF, Feng ZQ. miR214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β-catenin signaling. Mol Med Rep 2017;16:9301-8. https://doi.org/10.3892/mmr.2017.7821
- Ding F, Li QQ, Li L, et al. Isolation, culture and differentiation of duck (Anas platyrhynchos) preadipocytes. Cytotechnology 2015;67:773-81. https://doi.org/10.1007/s10616-014-9715-2
- Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009;10:R25. https://doi.org/10.1186/gb-2009-10-3-r25
- Wen M, Shen Y, Shi SH, Tang T. miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 2012;13:140. https://doi.org/10.1186/1471-2105-13-140
- Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012;40:37-52. https://doi.org/10.1093/nar/gkr688
- Zhang M, Li F, Ma XF, et al. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro. BMC Genomics 2019;20:743. https://doi.org/10.1186/s12864-019-6116-0
- Wei W, Sun WX, Han HY, Chu WW, Zhang LF, Chen J. miR130a regulates differential lipid accumulation between intramuscular and subcutaneous adipose tissues of pigs via suppressing PPARG expression. Gene 2017;636:23-9. https://doi.org/10.1016/j.gene.2017.08.036
- Hsu CC, Lai CY, Lin CY, Yeh KY, Her GM. MicroRNA-27b depletion enhances endotrophic and intravascular lipid accumulation and induces adipocyte hyperplasia in zebrafish. Int J Mol Sci 2018;19:93. https://doi.org/10.3390/ijms19010093
- Ma XF, Sun JW, Zhu SP, et al. MiRNAs and mRNAs analysis during abdominal preadipocyte differentiation in chickens. Animals (Basel) 2020;10:468. https://doi.org/10.3390/ani10030468
- Wu X, Qin L, Fako V, Zhang JT. Molecular mechanisms of fatty acid synthase (FASN)-mediated resistance to anti-cancer treatments. Adv Biol Regul 2014;54:214-21. https://doi.org/10.1016/j.jbior.2013.09.004
- Sawai M, Uchida Y, Ohno Y, et al. The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways. J Biol Chem 2017;292:15538-51. https://doi.org/10.1074/jbc.M117.803171
- Ellis JM, Frahm JL, Li LO, Coleman RA. Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidol 2010; 21:212-7. https://doi.org/10.1097/mol.0b013e32833884bb
- Lopes-Marques M, Machado AM, Ruivo R, Fonseca E, Carvalho E, Castro LFC. Expansion, retention and loss in the Acyl-CoA synthetase "Bubblegum" (Acsbg) gene family in vertebrate history. Gene 2018;664:111-8. https://doi.org/10.1016/j.gene.2018.04.058
- Bonnefont JPD, Prip-Buus F, Gobin C, Munnich S, ABastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 2004;25:495520. https://doi.org/10.1016/j.mam.2004.06.004
- Qiu F, Xie L, Ma JE, et al. Lower expression of SLC27A1 enhances intramuscular fat deposition in chicken via downregulated fatty acid oxidation mediated by CPT1A. Front Physiol 2017;29;8:449. https://doi.org/10.3389/fphys.2017.00449
- Rajesh RV, Heo GN, Park MR, et al. Proteomic analysis of bovine omental, subcutaneous and intramuscular preadipocytes during in vitro adipogenic differentiation. Comp Biochem Physiol Part D Genomics Proteomics 2010;5:23444. https://doi.org/10.1016/j.cbd.2010.06.004
- Das AM, Illsinger S, Lucke T, et al. Isolated mitochondrial long-chain ketoacyl-CoA thiolase deficiency resulting from mutations in the HADHB gene. Clin Chem 2006;52:530-4. https://doi.org/10.1373/clinchem.2005.062000
- Shen C, Song YH, Xie Y, et al. Downregulation of HADH promotes gastric cancer progression via Akt signaling pathway. Oncotarget 2017;8:76279-89. https://doi.org/10.18632/oncotarget.19348
- Zhang YN, Wang YJ, Wang XY, et al. Acetyl-coenzyme A acyltransferase 2 promote the differentiation of sheep precursor adipocytes into adipocytes. J Cell Biochem 2019; 120:8021-31. https://doi.org/10.1002/jcb.28080
- Shao F, Wang XG, Yu JF, Shen K, Qi C, Gu ZL. Expression of miR-33 from an SREBP2 intron inhibits the expression of the fatty acid oxidation-regulatory genes CROT and HADHB in chicken liver. Br Poult Sci 2019;60:115-24. https://doi.org/10.1080/00071668.2018.1564242
- Zheng Y, Jiang SB, Zhang YH, Zhang R, Gong DQ. Detection of miR-33 expression and the verification of its target genes in the fatty liver of geese. Int J Mol Sci 2015;16:12737-52. https://doi.org/10.3390/ijms160612737
- Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011;478:404-7. https://doi.org/10.1038/nature10486
- Jiang L, Bi D, Ding H, Ren Q, Wang P, Kan X. Identification and comparative profiling of gonadal microRNAs in the adult pigeon (Columba livia) Br Poult Sci 2019;60:638-48. https://doi.org/10.1080/00071668.2019.1639140
- Penna E, Orso F, Taverna D. miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol 2015;135:960-9. https://doi.org/10.1038/jid.2014.479
- Sharma T, Hamilton R, Mandal CC. miR-214: a potential biomarker and therapeutic for different cancers. Future Oncol 2015;11:349-63. https://doi.org/10.2217/fon.14.193
- Wu J, Li J, Chen WK, et al. MicroRNA-214 affects fibroblast differentiation of adipose-derived mesenchymal stem cells by targeting Mitofusin-2 during pelvic floor dysfunction in SD rats with birth trauma. Cell Physiol Biochem 2017;42: 1870-87. https://doi.org/10.1159/000479570
- Du KT, Deng JQ, He XG, Liu ZP, Peng C, Zhang MS. MiR214 regulates the human hair follicle stem cell proliferation and differentiation by targeting EZH2 and Wnt/β-Catenin signaling way in vitro. Tissue Eng Regen Med 2018;15:34150. https://doi.org/10.1007/s13770-018-0118-x
- Guo YZ, Li LH, J Gao, Chen XB, Sang QH. miR-214 suppresses the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and these effects are mediated through the inhibition of the JNK and p38 pathways. Int J Mol Med 2017;39:71-80. https://doi.org/10.3892/ijmm.2016.2826
- Houten SM, Wanders RJA, Ranea-Robles P. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism. Biochim Biophys Acta Mol Basis Dis 2020;1866:165720. https://doi.org/10.1016/j.bbadis.2020.165720