Acknowledgement
This study was supported financially by National Key R&D Program of China (No. 2021YFD1301200), the Agricultural Animal Breeding Project of Shandong Province (No. 2020 LZGC012), Shandong Province Pig Industry Technology System Project (No. SDAIT-08-02), Shandong Provincial Natural Science Foundation (No. ZR2019MC053).
References
- Shanshan W, Jianjun J, Zaiyan X, Bo Z. Functions and regulatory mechanisms of lncRNAs in skeletal myogenesis, muscle disease and meat production. Cells-Basel 2019;8:107. https://doi.org/10.3390/cells8091107
- Li Y, Chen X, Sun H, Wang H. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases. Cancer Lett 2018;417:58-64. https://doi.org/10.1016/j.canlet.2017.12.015
- Liu H, Xi Y, Liu G, Zhao Y, Li J, Lei M. Comparative transcriptomic analysis of skeletal muscle tissue during prenatal stages in Tongcheng and Yorkshire pig using RNA-seq. Funct Integr Genomics 2018;18:195-209. https://doi.org/10.1007/s10142-017-0584-6
- Zhou Y, Liu S, Hu Y, et al. Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns. BMC Biol 2020;18:85. https://doi.org/10.1186/s12915-020-00793-5
- Zillikens MC, Demissie S, Hsu YH, et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun 2017;8:80. https://doi.org/10.1038/s41467-017-00031-7
- Gu H, Li J, Ying F, Zuo B, Xu Z. Analysis of differential gene expression of the transgenic pig with overexpression of PGC1alpha in muscle. Mol Biol Rep 2019;46:3427-35. https://doi.org/10.1007/s11033-019-04805-8
- Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. https://doi.org/10.1016/j.semcdb.2017.11.011
- Bunch H, Lawney BP, Burkholder A, et al. RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics 2016;108:64-77. https://doi.org/10.1016/j.ygeno.2016.07.003
- Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011;25:1915-27. https://doi.org/10.1101/gad.17446611
- Luo W, Chen J, Li L, et al. C-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ 2019;26: 426-42. https://doi.org/10.1038/s41418-018-0129-0
- Li Y, Yuan J, Chen F, et al. Long noncoding RNA SAM promotes myoblast proliferation through stabilizing Sugt1 and facilitating kinetochore assembly. Nat Commun 2020;11: 2725. https://doi.org/10.1038/s41467-020-16553-6
- Cai B, Li Z, Ma M, et al. LncRNA-Six1 encodes a micropeptide to activate six1 in cis and is involved in cell proliferation and muscle growth. Front Physiol 2017;8:230. https://doi.org/10.3389/fphys.2017.00230
- Wang L, Zhao Y, Bao X, et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res 2015;25:335-50. https://doi.org/10.1038/cr.2015.21
- Jin CF, Li Y, Ding XB, et al. Lnc133b, a novel, long non-coding RNA, regulates bovine skeletal muscle satellite cell proliferation and differentiation by mediating miR-133b. Gene 2017; 630:35-43. https://doi.org/10.1016/j.gene.2017.07.066
- Li D, Huang M, Zhuang Z, et al. Genomic analyses revealed the genetic difference and potential selection genes of growth traits in two duroc lines. Front Vet Sci 2021;8:725367. https://doi.org/10.3389/fvets.2021.725367
- Yu J, Zhao P, Zheng X, Zhou L, Wang C, Liu JF. Genomewide detection of selection signatures in duroc revealed candidate genes relating to growth and meat quality. G3 (Bethesda) 2020;10:3765-73. https://doi.org/10.1534/g3.120.401628
- Chen S, Zhou Y, Chen Y, Gu J. Fastp: An ultra-fast all-inone FASTQ preprocessor. Bioinformatics 2018;34:i884-90. https://doi.org/10.1093/bioinformatics/bty560
- Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-9. https://doi.org/10.1038/nmeth.1923
- Kim D, Langmead B, Salzberg SL. HISAT: A fast spliced aligner with low memory requirements. Nat Methods 2015; 12:357-60. https://doi.org/10.1038/nmeth.3317
- Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008;36:D480-4. https://doi.org/10.1093/nar/gkm882
- Tafer H, Hofacker IL. RNAplex: A fast tool for RNA-RNA interaction search. Bioinformatics 2008;24:2657-63. https://doi.org/10.1093/bioinformatics/btn193
- Lorenz R, Bernhart SH, Honer zu Siederdissen C, et al. Vienna RNA Package 2.0. Algorithms Mol Biol 2011;6:26. https://doi.org/10.1186/1748-7188-6-26
- Wu Y, Wei B, Liu H, Li T, Rayner S. MiRPara: A SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 2011;12:107. https://doi.org/10.1186/1471-2105-12-107
- Der-Auwera GAV, Carneiro MO, Hartl C, Poplin R, Thibault J. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43:11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43
- Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164. https://doi.org/10.1093/nar/gkq603
- Ramaswami G, Zhang R, Piskol R, et al. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 2013;10:128-32. https://doi.org/10.1038/nmeth.2330
- Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 2012;22:142-50. https://doi.org/10.1101/gr.124107.111
- Lam MT, Li W, Rosenfeld MG, Glass CK. Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 2014;39:170-82. https://doi.org/10.1016/j.tibs.2014.02.007
- Ma M, Cai B, Jiang L, et al. LncRNA-Six1 is a target of miR-1611 that functions as a ceRNA to regulate six1 protein expression and fiber type switching in chicken myogenesis. Cells-Basel 2018;7:243. https://doi.org/10.3390/cells7120243
- Chen LL. Linking long noncoding RNA localization and function. Trends Biochem Sci 2016;41:761-72. https://doi.org/10.1016/j.tibs.2016.07.003
- Yotsukura S, Duverle D, Hancock T, Natsume-Kitatani Y, Mamitsuka H. Computational recognition for long noncoding RNA (lncRNA): Software and databases. Brief Bioinform 2017;18:9-27. https://doi.org/10.1093/bib/bbv114
- Li R, Li B, Jiang A, et al. Exploring the lncRNAs related to skeletal muscle fiber types and meat quality traits in pigs. Genes (Basel) 2020;11:883. https://doi.org/10.3390/genes11080883
- Jin W, Liu M, Peng J, Jiang S. Function analysis of Mef2c promoter in muscle differentiation. Biotechnol Appl Biochem 2017;64:647-56. https://doi.org/10.1002/bab.1524
- Sun JY, Zhu ZR, Wang H, et al. Knockdown of UACA inhibitsproliferation and invasion and promotes senescence of hepatocellular carcinoma cells. Int J Clin Exp Pathol 2018; 11:4666-75.
- Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci 2016;129:4321-7. https://doi.org/10.1242/jcs.190546
- Yoshida T, Akatsuka T, Imanaka-Yoshida K. Tenascin-C and integrins in cancer. Cell Adh Migr 2015;9:96-104. https://doi.org/10.1080/19336918.2015.1008332
- Zhou M, Li M, Liang X, et al. The significance of serum S100A9 and TNC levels as biomarkers in colorectal cancer. J Cancer 2019;10:5315-23. https://doi.org/10.7150/jca.31267
- Simionescu-Bankston A, Kumar A. Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. J Mol Med (Berl) 2016;94:853-66. https://doi.org/10.1007/s00109-016-1443-y
- Li Y, Chen X, Sun H, Wang H. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases. Cancer Lett 2018;417:58-64. https://doi.org/10.1016/j.canlet.2017.12.015
- Tomida T, Adachi-Akahane S. Roles of p38 MAPK signaling in the skeletal muscle formation, regeneration, and pathology. Nihon Yakurigaku Zasshi 2020;155:241-7. https://doi.org/10.1254/fpj20030
- Kumar A, Xie L, Ta CM, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. Elife 2020;9:e58941. https://doi.org/10.7554/eLife.58941
- Aphasizhev R. RNA and DNA editing: methods and protocols. (Chapter 11):171-84. Humana Press; 2011.
- Maas S, Kawahara Y, Tamburro KM, Nishikura K. A-to-I RNA editing and human disease. RNA Biol 2006;3:1-9. https://doi.org/10.4161/rna.3.1.2495
- Sarah, Djebali, Carrie, A., Davis, Angelika, et al. Landscape of transcription in human cells. Nature 2012;489:101-8. https://doi.org/10.1038/nature11233
- Sebastian S, Faralli H, Yao Z, et al. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation. Genes Dev 2013;27:1247-59. https://doi.org/10.1101/gad.215400.113
- Shen S, Park JW, Lu Z, et al. RMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci USA 2014;111(51):E5593-601.
- Hao Y, Feng Y, Yang P, et al. Transcriptome analysis reveals that constant heat stress modifies the metabolism and structure of the porcine longissimus dorsi skeletal muscle. Mol Genet Genomics 2016;291:2101-15. https://doi.org/10.1007/s00438-016-1242-8
- Gennarelli M, Lucarelli M, Zelano G, Pizzuti A, Novelli G, Dallapiccola B. Different expression of the myotonin protein kinase gene in discrete areas of human brain. Biochem Biophys Res Commun 1995;216:489-94. https://doi.org/10.1006/bbrc.1995.2649
- Zhang M, Zhu B, Davie J. Alternative splicing of MEF2C pre-mRNA controls its activity in normal myogenesis and promotes tumorigenicity in rhabdomyosarcoma cells. J Biol Chem 2015;290:310-24. https://doi.org/10.1074/jbc.M114.606277