Acknowledgement
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (821022-3) of the Ministry of Agriculture, Food, and Rural Affairs, and by the KU Research Professor Program of Konkuk University, Republic of Korea.
References
- Han MJ, Kim DH. 2020. Effects of red and fermented ginseng and ginsenosides on allergic disorders. Biomolecules 10: 634.
- Yin Q, Chen H, Ma RH, Zhang YY, Liu MM, Thakur K, et al. 2021. Ginsenoside CK induces apoptosis of human cervical cancer HeLa cells by regulating autophagy and endoplasmic reticulum stress. Food Funct. 12: 5301-5316. https://doi.org/10.1039/D1FO00348H
- Oh HA, Kim DE, Choi HJ, Kim NJ, Kim DH. 2015. Anti-fatigue effects of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol in mice. Biol. Pharm. Bull. 38: 1415-1419. https://doi.org/10.1248/bpb.b15-00230
- Lee SY, Jeong JJ, Eun SH, Kim DH. 2015. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur. J. Pharmacol. 762: 333-343. https://doi.org/10.1016/j.ejphar.2015.06.011
- Han Y, Wang T, Li C, Wang Z, Zhao Y, He J, et al. 2021. Ginsenoside Rg3 exerts a neuroprotective effect in rotenone-induced Parkinson's disease mice via its anti-oxidative properties. Eur. J. Pharmacol. 909: 174413.
- Oh HA, Kim DE, Choi HJ, Kim NJ, Kim DH. 2015. Anti-stress effects of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol in immobilized mice. Biol. Pharm. Bull. 38: 331-335. https://doi.org/10.1248/bpb.b14-00669
- Park CS, Yoo MH, Noh KH, Oh DK. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87: 9-19. https://doi.org/10.1007/s00253-010-2567-6
- Xu QF, Fang XL, Chen DF. 2003. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J. Ethnopharmacol. 84: 187-192. https://doi.org/10.1016/S0378-8741(02)00317-3
- Zheng MM, Xu FX, Li YJ, Xi XZ, Cui XW, Han CC, et al. 2017. Study on transformation of ginsenosides in different methods. Biomed Res. Int. 2017: 8601027.
- Shin KC, Oh DK. 2016. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Crit. Rev. Biotechnol. 36: 1036-1049. https://doi.org/10.3109/07388551.2015.1083942
- Jeong EB, Kim SA, Shin KC, Oh DK. 2020. Biotransformation of protopanaxadiol-type ginsenosides in Korean ginseng extract into food-available compound K by an extracellular enzyme from Aspergillus niger. J. Microbiol. Biotechnol. 30: 1560-1567. https://doi.org/10.4014/jmb.2007.07003
- Lee SJ, Lee JS, Lee E, Lim TG, Byun S. 2018. The ginsenoside metabolite compound K inhibits hormone-independent breast cancer through downregulation of cyclin D1. J. Funct. Foods 46: 159-166. https://doi.org/10.1016/j.jff.2018.04.050
- Yang XD, Yang YY, Ouyang DS, Yang GP. 2015. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100: 208-220. https://doi.org/10.1016/j.fitote.2014.11.019
- Han Y, Sun B, Hu X, Zhang H, Jiang B, Spranger MI, et al. 2007. Transformation of bioactive compounds by Fusarium sacchari fungus isolated from the soil-cultivated ginseng. J. Agric. Food Chem. 55: 9373-9379. https://doi.org/10.1021/jf070354a
- Zhou W, Yan Q, Li JY, Zhang XC, Zhou P. 2008. Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by Paecilomyces bainier sp. 229. J. Appl. Microbiol. 104: 699-706. https://doi.org/10.1111/j.1365-2672.2007.03586.x
- Bae SH, Lee HS, Kim MR, Kim SY, Kim JM, Suh HJ. 2011. Changes of ginsenoside content by mushroom mycelial fermentation in red ginseng extract. J. Ginseng. Res. 35: 235-242. https://doi.org/10.5142/jgr.2011.35.2.235
- Hsu BY, Lu TJ, Chen CH, Wang SJ, Hwang LS. 2013. Biotransformation of ginsenoside Rd in the ginseng extraction residue by fermentation with lingzhi (Ganoderma lucidum). Food Chem. 141: 4186-4193. https://doi.org/10.1016/j.foodchem.2013.06.134
- Li Z, Ahn HJ, Kim NY, Lee YN, Ji GE. 2016. Korean ginseng berry fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside analyses and anti-proliferative activities. Biol. Pharm. Bull. 39: 1461-1467. https://doi.org/10.1248/bpb.b16-00239
- Li Z, Ji GE. 2017. Ginseng fermented by mycotoxin non-producing Aspergillus niger: ginsenoside analysis and anti-proliferative effects. Food Sci. Biotechnol. 26: 987-991. https://doi.org/10.1007/s10068-017-0117-z
- Kim SA, Jeong EB, Oh DK. 2021. Complete bioconversion of protopanaxadiol-type ginsenosides to compound K by extracellular enzymes from the isolated strain Aspergillus tubingensis. J. Agric. Food Chem. 69: 315-324. https://doi.org/10.1021/acs.jafc.0c07424
- Shin KC, Kim TH, Choi JH, Oh DK. 2018. Complete biotransformation of protopanaxadiol-type ginsenosides to 20-O-βglucopyranosyl-20(S)-protopanaxadiol using a novel and thermostable β-glucosidase. J. Agric. Food Chem. 66: 2822-2829. https://doi.org/10.1021/acs.jafc.7b06108
- Veen Pvd, Flipphi MJA, Voragen AGJ, Visser J. 1991. Induction, purification and characterisation of arabinases produced by Aspergillus niger. Arch. Microbiol. 157: 23-28. https://doi.org/10.1007/BF00245330
- Moussa TAA, Tharwat NA. 2007. Optimization of cellulase and β-glucosidase induction by sugarbeet pathogen Sclerotium rolfsii. Afr. J. Biotechnol. 6: 1048-1054.
- Hanif A, Yasmeen A, Rajoka MI. 2004. Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresour. Technol. 94: 311-319. https://doi.org/10.1016/j.biortech.2003.12.013
- Kim TH, Yang EJ, Shin KC, Hwang KH, Park JS, Oh DK. 2018. Enhanced production of β-D-glycosidase and α-Larabinofuranosidase in recombinant Escherichia coli in fed-batch culture for the biotransformation of ginseng leaf extract to ginsenoside compound K. Biotechnol. Bioprocess Eng. 23: 183-193. https://doi.org/10.1007/s12257-018-0027-9
- Qu L, Ren LJ, Sun GN, Ji XJ, Nie ZK, Huang H. 2013. Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess Biosyst. Eng. 36: 1905-1912. https://doi.org/10.1007/s00449-013-0966-7