DOI QR코드

DOI QR Code

A numerical study on nonlinear stability of higher-order sandwich beams with cellular core and nanocomposite face sheets

  • Ding, Ke (Department of Civil Engineering and Architecture, Nanyang Normal University) ;
  • Jia, Hu (Department of Civil Engineering and Architecture, Nanyang Normal University) ;
  • Xu, Jun (Department of Civil Engineering and Architecture, Nanyang Normal University) ;
  • Liu, Yi (Department of Civil Engineering and Architecture, Nanyang Normal University) ;
  • Al-Tamimi, Haneen M. (Air Conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College) ;
  • Khadimallah, Mohamed Amine (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University)
  • 투고 : 2021.05.30
  • 심사 : 2022.05.24
  • 발행 : 2022.08.25

초록

In this research, a numerical study has been provided for examining the nonlinear stability behaviors of sandwich beams having a cellular core and two face sheets made of nanocomposites. The nonlinear stability behaviors of the sandwich beam having geometrically perfect/imperfect shapes have been studied when it is subjected to a compressive buckling load. The nanocomposite face sheets are made of epoxy reinforced by graphene oxide powders (GOPs). Also, the core has the shape of a honeycomb with regular configuration. Using finite element method based on a higher-order deformation beam element, the system of equations of motions have been solved to derive the stability curves. Several parameters such as face sheet thickness, core wall thickness, graphene oxide amount and boundary conditions have remarkable influences on stability curves of geometrically perfect/imperfect sandwich beams.

키워드

과제정보

This project was supported by the Key Technology R&D Program of Henan Province of China (No. 212102310953), Cultivation Fund Project of National Natural Science Foundation of Nanyang Normal University of China (No. 2022PY010), Nanyang Science and Technology Project of China (No. KJGG219, No. KJGG004).

참고문헌

  1. Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Couple. Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
  2. Ahankari, S.S and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.
  3. Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020b), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157. https://doi.org/10.12989/anr.2020.8.2.157.
  4. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adva. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
  5. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Mainten., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  6. Barati, M.R. and Shahverdi, H. (2017), "Dynamic modeling and vibration analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate systems", Eur. J. Mech.-A/Solid., 66, 256-268. https://doi.org/10.1016/j.euromechsol.2017.07.010.
  7. Barati, M.R. and Shahverdi, H. (2018a), "Forced vibration of porous functionally graded nanoplates under uniform dynamic load using general nonlocal stress-strain gradient theory", J. Vib. Control, 24(20), 4700-4715. https://doi.org/10.1177%2F1077546317733832. https://doi.org/10.1177%2F1077546317733832
  8. Barati, M.R. and Shahverdi, H. (2018b), "Nonlinear thermal vibration analysis of refined shear deformable FG nanoplates: two semi-analytical solutions", J. Brazil. Soc. Mech. Sci. Eng., 40(2), 1-15. https://doi.org/10.1007/s40430-018-0968-0.
  9. Ebrahimi, F. and Barati, M.R. (2017a), "Dynamic modeling of preloaded size-dependent nano-crystalline nano-structures", Appl. Math. Mech., 38(12), 1753-1772. https://doi.org/10.1007/s10483-017-2291-8.
  10. Ebrahimi, F. and Barati, M.R. (2017b), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in twoparameter elastic foundation", Adv. Nano Res., 5(4), 313. https://doi.org/10.12989/anr.2017.5.4.313.
  11. Ebrahimi, F. and Barati, M.R. (2017c), "A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams", Superl. Microstruct., 112, 64-78. https://doi.org/10.1016/j.spmi.2017.09.010.
  12. Ebrahimi, F. and Barati, M.R. (2017d), "Static stability analysis of embedded flexoelectric nanoplates considering surface effects", Appl. Phys. A, 123(10), 1-15. https://doi.org/10.1007/s00339-017-1265-y.
  13. Ebrahimi, F. and Barati, M.R. (2017e), "Electro-magnetic effects on nonlocal dynamic behavior of embedded piezoelectric nanoscale beams", J. Intel. Mater. Syst. Struct., 28(15), 2007-2022. https://doi.org/10.1177%2F1045389X16682850. https://doi.org/10.1177%2F1045389X16682850
  14. Ebrahimi, F. and Barati, M.R. (2018a), "Free vibration analysis of couple stress rotating nanobeams with surface effect under inplane axial magnetic field", J. Vib. Control, 24(21), 5097-5107. https://doi.org/10.1177%2F1077546317744719. https://doi.org/10.1177%2F1077546317744719
  15. Ebrahimi, F. and Barati, M.R. (2018b), "Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads", J. Vib. Control, 24(20), 4751-4763. https://doi.org/10.1177%2F1077546317734083. https://doi.org/10.1177%2F1077546317734083
  16. Ebrahimi, F. and Barati, M.R. (2018c), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 1-15. https://doi.org/10.1007/s40430-018-1350-y.
  17. Ebrahimi, F. and Barati, M.R. (2018d), "Static stability analysis of double-layer graphene sheet system in hygro-thermal environment", Microsyst. Technol., 24(9), 3713-3727. https://doi.org/10.1007/s00542-018-3827-0.
  18. Ebrahimi, F. and Barati, M.R. (2018e), "Influence of neutral surface position on dynamic characteristics of in-homogeneous piezo-magnetically actuated nanoscale plates", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(17), 3125-3143. https://doi.org/10.1177%2F0954406217728977. https://doi.org/10.1177%2F0954406217728977
  19. Ebrahimi, F. and Barati, M.R. (2018f), "Vibration analysis of parabolic shear-deformable piezoelectrically actuated nanoscale beams incorporating thermal effects", Mech. Adv. Mater. Struct., 25(11), 917-929. https://doi.org/10.1080/15376494.2017.1323141.
  20. Ebrahimi, F. and Barati, M.R. (2018g), "Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nanobeams subjected to in-plane magnetic field", Arab. J. Sci. Eng., 43(3), 1423-1433. https://doi.org/10.1007/s13369-017-2943-y.
  21. Ebrahimi, F. and Barati, M.R. (2018h), "Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(1), 162-173. https://doi.org/10.1177%2F0954406216674243. https://doi.org/10.1177%2F0954406216674243
  22. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNTreinforced aluminium composites", Compos. Part A: Appl. Sci. Manuf., 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008.
  23. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
  24. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
  25. Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020a), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  26. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020b), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
  27. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 135(1), 1-19. https://doi.org/10.1140/epjp/s13360-019-00042-x.
  28. Gao, N., Zhang, Z., Deng, J., Guo, X., Cheng, B. and Hou, H. (2022), "Acoustic metamaterials for noise reduction: A review", Adv. Mater. Technol., 7(6), 2100698. https://doi.org/10.1002/admt.202100698
  29. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B and Schulte, K. (2004), "Carbon nanotube-reinforced epoxycomposites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
  30. King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polym. Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
  31. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  32. Kunbar, L.A.H., Hamad, L.B., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlinear vibration of smart nonlocal magneto-electroelastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects", Smart Struct. Syst., 25(5), 619-630. https://doi.org/10.12989/sss.2020.25.5.619.
  33. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  34. Li, H. and Zhao, R. (2022), "Dissociation of ammonia borane and its subsequent nucleation on the Ru(0001) surface revealed by density functional theoretical simulations", Phys. Chem. Chem. Phys., 24(20), 12226-12235. https://doi.org/10.1039/D1CP05957B.
  35. Lin, F., Yang, C., Zeng, Q.H and Xiang, Y. (2018), "Morphological and mechanical properties of graphenereinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater. Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048.
  36. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  37. Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng. Des., 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
  38. Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
  39. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
  40. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  41. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  42. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  43. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B.M. and Hamouda, A.M.S. (2020e), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  44. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020l), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
  45. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on postbuckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  46. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
  47. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electroelastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
  48. Mohammed, A., Sanjayan, J.G., Nazari, A. and Al-Saadi, N.T.K. (2017), "Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature", Austr. J. Civil Eng., 15(1), 61-71. https://doi.org/10.1080/14488353.2017.1372849.
  49. Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Adv. Mater. Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
  50. Nieto, A., Bisht, A., Lahiri, D., Zhang, C and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: a review", Int. Mater. Rev., 62(5), 241-302. ttps://doi.org/10.1080/09506608.2016.1219481.
  51. Peng, Y., Zhang, L., Li, Z., Zhong, S., Liu, Y., Xie, S. and Luo, J. (2022), "Influences of wire diameters on output power in electromagnetic energy harvester", Int. J. Prec. Eng. Manuf.-Green Technol., 1-12. https://doi.org/10.1080/09506608.2016.1219481.
  52. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  53. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  54. Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
  55. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
  56. Shen, F., Zhang, D., Zhang, Q., Li, Z., Guo, H., Gong, Y. and Peng, Y. (2022), "Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators", Nano Energy, 107431. https://doi.org/10.1016/j.nanoen.2022.107431.
  57. Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B: Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
  58. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  59. Xin, C., Li, Z., Zhang, Q., Peng, Y., Guo, H. and Xie, S. (2022), "Investigating the output performance of triboelectric nanogenerators with single/double-sided interlayer", Nano Energy, 107448. https://doi.org/10.1016/j.nanoen.2022.107448.
  60. Xu, H., He, T., Zhong, N., Zhao, B. and Liu, Z. (2022), "Transient thermomechanical analysis of micro cylindrical asperity sliding contact of SnSbCu alloy", Tribol. Int., 167, 107362. https://doi.org/10.1016/j.triboint.2021.107362.
  61. Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  62. Yang, Y., Wang, Y., Zheng, C., Lin, H., Xu, R., Zhu, H. and Xu, X. (2022), "Lanthanum carbonate grafted ZSM-5 for superior phosphate uptake: Investigation of the growth and adsorption mechanism", Chem. Eng. J., 430, 133166. https://doi.org/10.1016/j.cej.2021.133166.
  63. Zhang, H., Liu, Y. and Deng, Y. (2021b), "Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring", Adv. Struct. Eng., 24(5), 947-961. https://doi.org/10.1177/1369433220971779.
  64. Zhang, L., Huang, M., Xue, J., Li, M. and Li, J. (2021a), "Repetitive mining stress and pore pressure effects on permeability and pore pressure sensitivity of bituminous coal", Nat. Resour. Res., 30(6), 4457-4476. https://doi.org/10.1007/s11053-021-09902-9.
  65. Zhang, X., Tang, Y., Zhang, F. and Lee, C. (2016), "A novel aluminum-graphite dual-ion battery", Adv. Energy Mater., 6(11), 1502588. https://doi.org/10.1002/aenm.201502588.
  66. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the firstorder shear deformation theory", Mech. Adv. Mater. Struct., 27, 3-11. https://doi.org/10.1080/15376494.2018.1444216.