DOI QR코드

DOI QR Code

Trade-offs between male fertility reduction and selected growth factors or the klotho response in a lipopolysaccharide-dependent mouse model

  • Solek, Przemyslaw (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow) ;
  • Mytych, Jennifer (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow) ;
  • Sujkowska, Ewelina (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow) ;
  • Grzegorczyk, Magdalena (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow) ;
  • Jasiewicz, Patrycja (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow) ;
  • Sowa‑Kucma, Magdalena (Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University) ;
  • Stachowicz, Katarzyna (Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences) ;
  • Koziorowski, Marek (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow) ;
  • Tabecka‑Lonczynska, Anna (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow)
  • 투고 : 2021.01.21
  • 심사 : 2021.04.20
  • 발행 : 2022.04.15

초록

The increasing number of depression cases leads to a greater need for new antidepressant treatment development. It is postulated that antidepressants may harm male fertility, but the cellular mechanism is still poorly understood. The role of growth factors and klotho protein in maintaining normal male reproductive function is well documented. Hence, the study aimed to investigate the effect of the antidepressant drug - imipramine (tricyclic AD), and other substances with antidepressant potential (ALS), administered in combination or in combination with LPS (an animal model of depression) on gene expression and protein synthesis of IGF-2 (insulin-like growth factor 2), TGF-β1 (transforming growth factor β1), NGF (nerve growth factor), KGF (keratinocyte growth factor) and protein synthesis of VEGF-A (vascular endothelial growth factor A), IGF-IR (insulin-like growth factor receptor 1), EGFR (epidermal growth factor receptor) and klotho in the testis of mice. Mice were injected intraperitoneally with selected ALS and LPS or 10% DMSO (controls) (n=7/group) once a day for 14 days. Animals were decapitated and testes collected for RNA and protein purification. PCR and western blot methods were employed for the evaluation of growth factors and klotho expression. The results obtained indicated a decreased level of most of the analyzed genes and proteins, except KGF; its expression increased after treatment with MTEP and IMI administrated individually and after NS-398, and IMI in combination with LPS. Our results may suggest that the tested ALS and LPS can contribute to a reduction of male fertility, but NS-398, IMI, and IMI+NS-398 may also act as stimulants after LPS.

키워드

과제정보

This study was supported by the statutory fund of the Department of Biotechnology, Poland. Also, partially by grant No.: UMO-2014/13/D/NZ7/00292, assigned by the National Science Centre, Poland, to K. Stachowicz and by the statutory fund of the Maj Institute of Pharmacology, Polish Academy of Sciences in Krakow (Protocol No 178/2017).

참고문헌

  1. Wang SM, Han C, Bahk WM, Lee SJ, Patkar AA, Masand PS, Pae CU (2018) Addressing the side effects of contemporary antidepressant drugs: a comprehensive review. Chonnam Med J 54:101-112. https://doi.org/10.4068//cmj.2018.54.2.101
  2. Casilla-Lennon MM, Meltzer-Brody S, Steiner AZ (2016) The effect of antidepressants on fertility. Am J Obserics Gynecol 215:314.e311-315. https://doi.org/10.1016/j.fertnstert.2014.12.023
  3. Hendrick V, Gitlin M, Althshuler L, Korenman S (2000) Antidepressant medications, mood and male fertility. Psychoneuroendocrinology 25:37-51. https://doi.org/10.1016//S0306-4530(99)00038-4
  4. Tanrikut C, Schlegel PN (2007) Antidepressant-associated changes in semen parameters. Urology 69:185-187. https://doi.org//10.1016/j.urology.2006.10.034
  5. Hendrick V, Gitlin M, Altshuler L, Korenman S (2000) Antidepressant medications, mood and male fertility. Psychoneuroendocrinology 25:37-51. https://doi.org/10.1016//s0306-4530(99)00038-4
  6. Nalbandian A, Dettin L, Dym M, Ravindranath N (2003) Expression of vascular endothelial growth factor receptors during male germ cell differentiation in the mouse. Biol Reprod 69:985-994. https://doi.org/10.1095//biolreprod.102.013581
  7. Agrawal R, Jacobs H, Payne N, Conway G (2002) Concentration of vascular endothelial growth factor released by cultured human luteinized granulosa cells is higher in women with polycystic ovaries than in women with normal ovaries. Fertil Steril 78:1164-1169. https://doi.org/10.1016//S0015-0282(02) 04242-5
  8. Griffeth RJ, Bianda V, Nef S (2014) The emerging role of insulinlike growth factors in testis development and function. Basic Clin Androl 24:12. https://doi.org/10.1186//2051-4190-24-12
  9. Ayson FG, de Jesus EG, Moriyama S, Hyodo S, Funkenstein B, Gertler A, Kawauchi H (2002) Differential expression of insulin-like growth factor I and II mRNAs during embryogenesis and early larval development in rabbitfish, Siganus guttatus. Gen Comp Endocrinol 126:165-174. https://doi.org/10.1006/gcen.2002.7788
  10. Gonzalez CR, Matzkin ME, Frungieri MB, Terradas C, Ponzio R, Puigdomenech E, Levalle O, Calandra RS, Gonzalez-Calvar SI (2010) Expression of the TGF-beta1 system in human testicular pathologies. Reprod Biol Endocrinol 8:148. https://doi.org//10.1186//1477-7827-8-148
  11. Maranesi M, Zerani M, Leonardi L, Pistilli A, Arruda-Alencar J, Stabile AM, Rende M, Castellini C, Petrucci L, Parillo F, Moura A, Boiti C (2015) Gene expression and localization of NGF and its cognate receptors NTRK1 and NGFR in the sex organs of male rabbits. Reprod Domest Anim 50:918-925. https://doi.org/10.1111//rda.12609
  12. Shiraishi K, Matsuyama H (2012) Local expression of epidermal growth factor-like growth factors in human testis and its role in spermatogenesis. J Androl 33:66-73. https://doi.org/10.2164//jandrol.110.011981
  13. Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M, Takei K (2004) Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 29:91-99. https://doi.org/10.1247//csf.29.91
  14. Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, James S, Wilkinson IB, Ting S, Hsiao LL, Hiemstra TF, Zehnder D (2015) alpha-Klotho Expression in Human Tissues. J Clin Endocrinol Metab 100:E1308-E1318. https://doi.org/10.1210/jc.2015-1800
  15. Wang Y, Sun Z (2009) Current understanding of klotho. Ageing Res Rev 8:43-51. https://doi.org/10.1016/j. arr. 2008. 10. 002
  16. Painsipp E, Kofer MJ, Sinner F, Holzer P (2011) Prolonged depression-like behavior caused by immune challenge: influence of mouse strain and social environment. PLoS ONE 6:e20719. https://doi.org/10.1371//journal.pone.0020719
  17. Martin SA, Dantzer R, Kelley KW, Woods JA (2014) Voluntary wheel running does not affect lipopolysaccharide-induced depressive-like behavior in young adult and aged mice. Neuro-ImmunoModulation 21:52-63. https://doi.org/10.1159//000356144
  18. Stachowicz K (2019) Behavioral consequences of co-administration of MTEP and the COX-2 inhibitor NS398 in mice. Part 1. Behav Brain Res 370:111961. https://doi.org/10.1016/j.bbr.2019.111961
  19. Stachowicz K, Bobula B, Tokarski K (2020) NS398, a cyclooxygenase-2 inhibitor, reverses memory performance disrupted by imipramine in C57Bl/6J mice. Brain Res 1734:146741. https://doi.org//10.1016/j.brainres.2020.146741
  20. Schmidt JA, de Avila JM, McLean DJ (2007) Analysis of gene expression in bovine testis tissue prior to ectopic testis tissue xenografting and during the grafting period. Biol Reprod 76:1071-1080. https://doi.org/10.1095//biolreprod.106.058222
  21. Evans-Hoeker EA, Eisenberg E, Diamond MP, Legro RS, Alvero R, Coutifaris C, Casson PR, Christman GM, Hansen KR, Zhang H, Santoro N, Steiner AZ (2018) Major depression, antidepressant use, and male and female fertility. Fertil Steril 109:879-887. https://doi.org/10.1016/j.fertnstert.2018.01.029
  22. Palaniyappan L, Insole L, Ferrier N (2009) Combining antidepressants: a review of evidence. Adv Psychiatr Treat 15:90-99. https://doi.org//10.1192//apt.bp.107.004820
  23. Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A (2001) Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 229:141-162. https://doi.org/10.1006//dbio.2000.9975
  24. Yan YC, Sun YP, Zhang ML (1998) Testis epidermal growth factor and spermatogenesis. Arch Androl 40:133-146. https://doi.org//10.3109//01485019808987936
  25. Pomierny-Chamiolo L, Poleszak E, Pilc A, Nowak G (2010) NMDA but not AMPA glutamatergic receptors are involved in the antidepressant-like activity of MTEP during the forced swim test in mice. Poland Pharmacol Rep 62:1186-1190. https://doi.org//10.1016//S1734-1140(10)70381-9
  26. Palucha-Moniewiera A, Wieronska JM, Branski P, Burnat G, Chruscicka B, Pilc A (2013) Is the mGlu5 receptor a possible target for new antidepressant drugs? Pharmacol Rep 65:1506-1511. https://doi.org/10.1016//s1734-1140(13)71511-1
  27. Marciniak M, Chruscicka B, Lech T, Burnat G, Pilc A (2016) Expression of group III metabotropic glutamate receptors in the reproductive system of male mice. Reprod Fertil Dev 28:369-374. https://doi.org/10.1071//RD14132
  28. Wang X, Liang Y, Wang J, Wang M (2013) Effect of NS-398, a cyclooxygenase-2 selective inhibitor, on the cytotoxicity of cytotoxic T lymphocytes to ovarian carcinoma cells. Tumour Biol 34:1517-1522. https://doi.org/10.1007//s13277-013-0677-3
  29. Muller N, Schwarz MJ (2008) COX-2 inhibition in schizophrenia and major depression. Curr Pharm Des 14:1452-1465. https://doi.org//10.2174//138161208784480243
  30. Romanelli F, Valenca M, Conte D, Isidori A, Negro-Vilar A (1995) Arachidonic acid and its metabolites effects on testosterone production by rat Leydig cells. J Endocrinol Invest 18:186-193. https://doi.org/10.1007//BF03347801
  31. Moraga PF, Llanos MN, Ronco AM (1997) Arachidonic acid release from rat Leydig cells depends on the presence of luteinizing hormone/human chorionic gonadotrophin receptors. J Endocrinol 154:201-209. https://doi.org/10.1677//joe.0.1540201
  32. Wang X, Walsh LP, Reinhart AJ, Stocco DM (2000) The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J Biol Chem 275:20204-20209. https://doi.org/10.1074//jbc.M003113200
  33. Wang X, Dyson MT, Jo Y, Stocco DM (2003) Inhibition of cyclooxygenase-2 activity enhances steroidogenesis and steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells. Endocrinology 144:3368-3375. https://doi.org/10.1210//en.2002-0081
  34. Marks DM, Shah MJ, Patkar AA, Masand PS, Park GY, Pae CU (2009) Serotonin-norepinephrine reuptake inhibitors for pain control: premise and promise. Curr Neuropharmacol 7:331-336. https://doi.org/10.2174//157015909790031201
  35. Haigh JJ (2008) Role of VEGF in organogenesis. Organogenesis 4:247-256. https://doi.org/10.4161//org.4.4.7415
  36. Brown LF, Yeo KT, Berse B, Morgentaler A, Dvorak HF, Rosen S (1995) Vascular permeability factor (vascular endothelial growth factor) is strongly expressed in the normal male genital tract and is present in substantial quantities in semen. J Urol 154:576-579. https://doi.org/10.1016//S0022-5347(01)67114-3
  37. Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V, Gunji Y, Jeltsch MM, Shibuya M, Alitalo K, Eriksson U (1998) Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA 95:11709-11714. https://doi.org/10.1073//pnas.95.20.11709
  38. Luo H, Kimura K, Aoki M, Hirako M (2002) Vascular endothelial growth factor (VEGF) promotes the early development of bovine embryo in the presence of cumulus cells. J Vet Med Sci 64:967-971. https://doi.org/10.1292//jvms.64.967
  39. Obermair A, Obruca A, Pohl M, Kaider A, Vales A, Leodolter S, Wojta J, Feichtinger W (1999) Vascular endothelial growth factor and its receptors in male fertility. Fertil Steril 72:269-275. https://doi.org//10.1016//s0015-0282(99)00234-4
  40. Korpelainen EI, Karkkainen MJ, Tenhunen A, Lakso M, Rauvala H, Vierula M, Parvinen M, Alitalo K (1998) Overexpression of VEGF in testis and epididymis causes infertility in transgenic mice: evidence for nonendothelial targets for VEGF. J Cell Biol 143:1705-1712. https://doi.org/10.1083//jcb.143.6.1705
  41. Tabecka-Lonczynska A, Mytych J, Solek P, Kowalewski MP, Koziorowski M (2019) Seasonal expression of insulin-like growth factor 1 (IGF-1), its receptor IGF-1R and klotho in testis and epididymis of the European bison (Bison bonasus, Linnaeus 1758). Theriogenology 126:199-205. https://doi.org/10.1016/j.theriogenology.2018.12.016
  42. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983-985. https://doi.org/10.1126//science.6823562
  43. Reinecke M, Collet C (1998) The phylogeny of the insulin-like growth factors. Int Rev Cytol 183:1-94. https://doi.org/10.1016/S0074-7696(08)60142-4
  44. Perrot V, Moiseeva EB, Gozes Y, Chan SJ, Funkenstein B (2000) Insulin-like growth factor receptors and their ligands in gonads of a hermaphroditic species, the gilthead seabream (Sparus aurata): expression and cellular localization. Biol Reprod 63:229-241. https://doi.org/10.1095//biolreprod63.1.229
  45. Nakamura M, Kobayashi T, Chang XT, Nagahama Y (1998) Gonadal sex differentiation in teleost fish. J Exp Zool 281:362-372. https://doi.org/10.1002//(SICI)1097-010X(19980 801)281:5<362::AID-JEZ3>3.0.CO;2-M
  46. Tse MC, Vong QP, Cheng CH, Chan KM (2002) PCR-cloning and gene expression studies in common carp (Cyprinus carpio) insulin-like growth factor-II. Biochim Biophys Acta 1575:63-74. https://doi.org/10.1016//s0167-4781(02)00244-0
  47. Vinas J, Piferrer F (2008) Stage-specific gene expression during fish spermatogenesis as determined by laser-capture microdissection and quantitative-PCR in sea bass (Dicentrarchus labrax) gonads. Biol Reprod 79:738-747. https://doi.org/10.1095//biolreprod.108.069708
  48. Greene MW, Chen TT (1997) Temporal expression pattern of insulin-like growth factor mRNA during embryonic development in a teleost, rainbow trout (Onchorynchus mykiss). Mol Mar Biol Biotechnol 6:144-151 (PMID: 9200841)
  49. Radhakrishnan B, Oke BO, Papadopoulos V, DiAugustine RP, Suarez-Quian CA (1992) Characterization of epidermal growth factor in mouse testis. Endocrinology 131:3091-3099. https://doi.org//10.1210//endo.131.6.1446643
  50. Kassab M, Abd-Elmaksoud A, Ali MA (2007) Localization of the epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) in the bovine testis. J Mol Histol 38:207-214. https://doi.org/10.1007//s10735-007-9089-2
  51. He J, Dong C, You R, Zhu Z, Lv L, Smith GW (2009) Localization of epidermal growth factor (EGF) and its receptor (EGFR) during postnatal testis development in the alpaca (Lama pacos). Anim Reprod Sci 116:155-161. https://doi.org/10.1016/j.anireprosci.2009.01.002
  52. Pan Y, Cui Y, Yu S, Zhang Q, Fan J, Abdul Rasheed B, Yang K (2014) The expression of epidermal growth factor (EGF) and its receptor (EGFR) during post-natal testes development in the yak. Reprod Domest Anim 49:970-976. https://doi.org/10.1111//rda.12416
  53. Wong RW, Kwan RW, Mak PH, Mak KK, Sham MH, Chan SY (2000) Overexpression of epidermal growth factor induced hypospermatogenesis in transgenic mice. J Biol Chem 275:18297-18301. https://doi.org/10.1074//jbc.M001965200
  54. Leone F, Lofaro D, Gigliotti P, Perri A, Vizza D, Toteda G, Lupinacci S, Armentano F, Papalia T, Bonofiglio R (2014) Soluble Klotho levels in adult renal transplant recipients are modulated by recombinant human erythropoietin. J Nephrol 27:577-585. https://doi.org//10.1007//s40620-014-0089-5
  55. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45-51. https://doi.org/10.1038/36285
  56. Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kinoshita S, Kuroki T, Nabeshima Y (2001) Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015-1020. https://doi.org/10.1006//bbrc.2000.4226
  57. Imai M, Ishikawa K, Matsukawa N, Kida I, Ohta J, Ikushima M, Chihara Y, Rui X, Rakugi H, Ogihara T (2004) Klotho protein activates the PKC pathway in the kidney and testis and suppresses 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression. Endocrine 25:229-234. https://doi.org/10.1385//ENDO:25:3:229
  58. Chang WY, Kulp SK, Sugimoto Y, Canatan H, Shidaifat F, Inpanbutr N, Lin YC (1996) Detection of keratinocyte growth factor (KGF) messenger ribonucleic acid and immunolocalization of KGF in the canine testis. Endocrine 5:247-255. https://doi.org/10.1007//BF02739057
  59. Sawada J, Itakura A, Tanaka A, Furusaka T, Matsuda H (2000) Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Blood 95:2052-2058. https://doi.org/10.1182//blood.V95.6.2052
  60. Skaper SD (2017) Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 151:1-15. https://doi.org/10.1111//imm.12717
  61. Cupp AS, Kim GH, Skinner MK (2000) Expression and action of neurotropin-3 and nerve growth factor in embryonic and early postnatal rat testis development. Biol Reprod 63:1617-1628. https://doi.org/10.1095//biolreprod63.6.1617
  62. Wang H, Dong Y, Chen W, Hei J, Dong C (2011) Expression and localization of nerve growth factor (NGF) in the testis of alpaca (llama pacos). Folia Histochem Cytobiol 49:55-61. https://doi.org//10.5603//FHC.2011.0009
  63. Lui WY, Lee WM, Cheng CY (2003) TGF-betas: their role in testicular function and Sertoli cell tight junction dynamics. Int J Androl 26:147-160. https://doi.org/10.1046/j.1365-2605.2003.00410.x