DOI QR코드

DOI QR Code

Sub-lethal effects of organophosphates and synthetic pyrethroid insecticides on muscle tissue transaminases of Oreochromis niloticus in vivo

  • Amin, Muhammad (Department of Zoology, University of Karachi) ;
  • Yousuf, Masarrat (Department of Zoology, University of Karachi) ;
  • Ahmad, Naveed (Department of Maritime Science, Bahria University) ;
  • Attaullah, Mohammad (Department of Zoology, University of Malakand) ;
  • Ikram, Muhammad (Department of Chemistry, Abdul Wali Khan University) ;
  • Zaid, Attia A. Abou (Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University) ;
  • Yaro, Clement Ameh (Department of Animal and Environmental Biology, University of Uyo) ;
  • Alshammari, Eida M. (Department of Chemistry, College of Sciences, University of Ha'il) ;
  • Binnaser, Yaser S. (Department of Biology, College of Sciences, Taibah University) ;
  • Batiha, Gaber El‑Saber (Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University) ;
  • Buneri, Islam Dad (Department of Zoology, University of Karachi)
  • 투고 : 2020.12.05
  • 심사 : 2021.04.20
  • 발행 : 2022.04.15

초록

Organophosphates and synthetic pyrethroid insecticides have been commonly used in public health and agriculture. The present study aimed to evaluate the sub-lethal effects of organophosphates and synthetic pyrethroid insecticides on transaminases: glutamate oxaloacetate/aspartate transaminase (AST) and glutamate pyruvate/alanine transaminase (ALT) in Oreochromis niloticus. Fish were exposed to malathion (OP), chlorpyrifos (OP) and λ-cyhalothrin (synthetic pyrethroid) at sublethal concentrations of 1.425, 0.125 and 0.0039 ppm, respectively for 24 and 48 h. AST and ALT activities were shown to be remarkably (p<0.05) decreased and increased, respectively in O. niloticus treated with the insecticides. The highest and lowest inhibition in AST level were noted as -12.2% and -12.2% in chlorpyrifos and λ-cyhalothrin 24 h treated fish samples, respectively. The highest and lowest elevation in ALT level were recorded as+313% and 237% in 48 h chlorpyrifos and 24 h malathion treated fish samples, respectively. This indicates that the insecticides used in this study did not result in death but in changes in AST and ALT enzyme activities. Therefore, organophosphates (malathion, chlorpyrifos) and synthetic pyrethroid (λ-cyhalothrin) insecticides are toxic to fishes and could affects their survival in their natural habitat.

키워드

과제정보

The authors extend their appreciation to the Researchers supporting Project Number (RSP-2020/120) King Saud University, Riyadh, Saudi Arabia.

참고문헌

  1. Soderlund DM, Bloomquist JR (1989) Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol 34:77-96. https://doi.org/10.1146/annurev.en.34.010189.000453
  2. Bhavan PS, Srinivasan V, Satgurunathan T et al (2015) Lethal and sub-lethal toxic effects of a pyrethroid insecticide, λ-cyhalothrin on activities of acetylcholinesterase, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase and catalase in the post-larvae of the prawn Macrobrachium rosenbergii. Adv Biores 6. https://doi.org/10.15515/abr.0976-4585.6.5.2229
  3. Kumar S, Kaushik G, Villarreal-Chiu JF (2016) Scenario of organophosphate pollution and toxicity in India: a review. Environ Sci Pollut Res 23:9480-9491. https://doi.org/10.1007/s11356-016-6294-0
  4. O'Brien RD (2016) Toxic phosphorus esters: chemistry, metabolism, and biological efects.Elsevier, p 446. https://doi.org/10.1002/ange.19620741227
  5. John PJ (2007) Alteration of certain blood parameters of freshwater teleost Mystus vittatus after chronic exposure to Metasystox and Sevin. Fish Physiol Biochem 33:15-20. https://doi.org/10.1007/s10695-006-9112-7
  6. Kumar A, Sharma B, Pandey RS (2014) λ-Cyhalothrin and cypermethrin induce stress in the freshwater muddy fish, Clarias batrachus. Toxicol Environ Chem 96:136-149. https://doi.org/10.1080/02772248.2014.913865
  7. Campana MA, Panzeri AM, Moreno VCJ et al (1999) Genotoxic evaluation of the pyrethroid lambda-cyhalothrin using the micronucleus test in erythrocytes of the fish Cheirodon interruptus interruptus. Mutai Res/Genet Toxicol Environ Mutagen 438:155-161. https://doi.org/10.1016/S1383-5718(98)00167-3
  8. Ganeshwade R (2011) Biochemical changes induced by dimethoate in the liver of fresh water fish Puntius ticto (HAM). Proc Biol Forum Int J 65-68. https://doi.org/10.5897/JENE11.134
  9. Alalibo K, Patricia UA, Ransome DE (2019) Effects of lambda cyhalothrin on the behaviour and histology of gills of Sarotherodon melanotheron in brackish water. Sci Afr 6:e00178. https://doi.org/10.1016/j.sciaf.2019.e00178
  10. Maund SJ, Hamer MJ, Warinton JS et al (1998) Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: considerations for higher-tier aquatic risk assessment. Pest Sci 54:408-417. https://doi.org/10.1002/(SICI)1096-9063(199812)54:4%3C408::AID-PS843%3E3.0.CO;2-T
  11. El-Sayed YS, Saad TT, El-Bahr SM (2007) Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ Toxicol Pharmacol 24:212-217. https://doi.org/10.1016/j.etap.2007.05.006
  12. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591-625. https://doi.org/10.1152/physrev.1997.77.3.591
  13. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  14. Patil VK, David, M (2009) Hepatotoxic potential of malathion in the freshwater teleost, Labeo rohita (Hamilton). Vet Arh 79:179-188. https://hrcak.srce.hr/37427
  15. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13-30. https://doi.org/10.1016/j.aquatox.2010.10.006
  16. Banaee M, Sureda A, Mirvaghefi A et al (2011) Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol 99:1-6. https://doi.org/10.1016/j.pestbp.2010.09.001
  17. Banaee M (2013) Physiological dysfunction in fish after insecticides exposure. Insecticides Dev Saf More Effect Technol. https://doi.org/10.5772/54742
  18. Malarvizhi A, Kavitha C, Saravanan M et al (2012) Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. J King Saud Univ Sci 24:179-186. https://doi.org/10.1016/j.jksus.2011.01.001
  19. Lewis K, Tzilivakis J, Green A et al (2006) Pesticide properties DataBase (PPDB). http://hdl.handle.net/2299/15375
  20. Devillers J, Bintein S, Domine D (1996) Comparison of BCF models based on log P. Chemosphere 33:1047-1065. https://doi.org/10.1016/0045-6535(96)00246-9
  21. Jackson SH, Cowan-Ellsberry CE, Thomas G (2009) Use of quantitative structural analysis to predict fish bioconcentration factors for pesticides. J Agric Food Chem 57:958-967. https://doi.org/10.1021/jf803064z
  22. Corcellas C, Eljarrat E, Barcelo D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110-116. https://doi.org/10.1016/j.envint.2014.11.007
  23. El-Gawad E, Abbass A, Shaheen A (2012) Risks induced by pesticides on fish reproduction. In: Proceedings of the 5th global fisheries and aquaculture research conference, Faculty of Agriculture, Cairo University, Giza, 1-3 October 2012, pp 329-338
  24. Eissa F, Ghanem K, Al-Sisi M (2020) Occurrence and human health risks of pesticides and antibiotics in Nile tilapia along the Rosetta Nile branch, Egypt. Toxicol Rep. https://doi.org/https://doi.org/10.1016/j.toxrep.2020.03.004
  25. Zaghloul K (2000) Effect of different water sources on some biological and biochemical aspects of the Nile tilapia Oreochromis niloticus and Nile cat fish Clarias gariepinus. J Zool 34:353-377
  26. Federation WE, Association APH (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington
  27. Guideline P-BT (2001) OECD guideline for the testing of chemicals. Hershberger 601:858
  28. Huang X-J, Choi Y-K, Im H-S et al (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensor 6:756-782. https://doi.org/10.3390/s6070756
  29. Reitzman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalo acetic acid, glutamic pyruvic transaminase. Am J Clin Path 28:56-63. https://doi.org/10.1093/ajcp/28.1.56
  30. Ilahi I, Samar S, Khan I et al (2013) In vitro antioxidant activities of four medicinal plants on the basis of DPPH free radical scavenging. Pak J Pharm Sci 26:949-952
  31. Yousef MI, Awad TI, Mohamed EH (2006) Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by vitamin E. Toxicology 27:240-247. https://doi.org/10.1016/j.tox.2006.08.008
  32. Ramaswamy M, Panneer TP, Selvam N (1999) Glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) enzyme activities in different tissues of Sarotherodon mossambicus (Peters) exposed to a carbamate pesticide, carbaryl. Pestic Sci 55:1217-1221. https://doi.org/10.1002/(SICI)1096-9063(199912)55:12%3C1217::AID-S78%3E3.0.CO;2-G
  33. De Smet H, Blust R (2001) Stress responses and changes in protein metabolism in carp Cyprinus carpio during cadmium exposure. Ecotoxicol Environ Saf 48:255-262. https://doi.org/10.1006/eesa.2000.2011
  34. Firat O, Cogun HY, Yuzereroglu TA et al (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 37:657-666. https://doi.org/10.1007/s10695-011-9466-3
  35. Okechukwu EO, Auta J (2007) The effects of sub-lethal doses of lambda-cyhalothrin on some biochemical characteristics of the African catfish Clarias gariepinus. J Biol Sci 7:1473-1477. https://doi.org/10.3923/jbs.2007.1473.1477
  36. Haider MJ, Rauf A (2014) Sub-lethal effects of diazinon on hematological indices and blood biochemical parameters in Indian carp, Cirrhinus mrigala (Hamilton). Braz Arch Biol Technol 57:947-953. https://doi.org/10.1590/S1516-8913201402086
  37. Sadhu AK, Chowdhury D, Mukhopadhyay P (1985) Relationship between serum enzymes, histological features and enzymes in hepatopancreas after sublethal exposure to malathion and phosphamidon in the murrel Channa striatus (BL.). Int J Environ Stud 24:35-41. https://doi.org/10.1080/00207238508710174
  38. Agrahari S, Gopal K, Pandey K (2006) Biomarkers of monocrotophos in a freshwater fish, Channa punctatus (Bloch). J Environ Bio 37:453-457
  39. Velisek J, Dobsikova R, Svobodova Z et al (2006) Effect of deltamethrin on the biochemical profile of common carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 76:992-998. https://doi.org/10.1007/s00128-006-1016-9
  40. Velisek J, Jurcikova J, Dobsikova R et al (2007) Effects of deltamethrin on rainbow trout (Oncorhynchus mykiss). Environ Toxicol Pharmacol 23:297-301. https://doi.org/10.1007/s00128-006-1016-9
  41. Sharafeldin K, Abdel-Gawad H, Ramzy E et al (2015) Harmful impact of profenofos on the physiological parameters in Nile tilapia, Oreochromis niloticus. Int J Basic Appl Sci 4:19-26 https://doi.org/10.14419/ijbas.v4i1.3832
  42. Borges A, Scotti LV, Siqueira DR et al (2007) Changes in hematological and serum biochemical values in jundia Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 69:920-926. https://doi.org/10.1016/j.chemosphere.2007.05.068
  43. Nayak A, Das B, Kohli M et al (2004) The immunosuppressive effect of α-permethrin on Indian major carp, rohu (Labeo rohita Ham.). Fish Shellfish Immunol 16:41-50. https://doi.org/10.1016/S1050-4648(03) 00029-9
  44. Oruc EO, uner N (1999) Effects of 2, 4-Diamin on some parameters of protein and carbohydrate metabolisms in the serum, muscle and liver of Cyprinus carpio. Environ Pollut 105:267-272. https://doi.org/10.1016/S0269-7491(98) 00206-1
  45. Lee J-w, Kim J-e, Shin Y-j et al (2014) Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during longterm exposure to zinc oxide nanoparticles. Ecotoxicol Environ Saf 104:9-17. https://doi.org/10.1016/j.ecoenv.2014.01.040
  46. Gill TS, Pande J, Tewari H (1990) Enzyme modulation by sublethal concentrations of aldicarb, phosphamidon, and endosulfan in fish tissues. Pestic Biochem Physiol 38:231-244. https://doi.org/10.1016/0048-3575(90)90095-J
  47. Yousafzai AM, Shakoori A (2011) Hepatic responses of a freshwater fish against aquatic pollution. Pak J Zool 43
  48. El-Demerdash FM, Yousef MI, Al-Salhen KS (2003) Protective effects of isoflavone on some biochemical parameters affected by cypermethrin in male rabbits. J Environ Sci Health B 38:365-378. https://doi.org/10.1081/PFC-120019902
  49. Khan MZ, Erum ZS, Ahmad I, Fatima F (2002) Effect of agricultural pesticide permethrin on protein contents in liver and kidney of lizard species Calotes versicolor in comparison to in frog Rana tigrina. Bull Pure Appl Sci 21:93-97. https://doi.org/10.3923/jbs.2002.780.781
  50. Oluah N (1999) Plasma aspartate aminotransferase activity in the catfish Clarias albopunctatus exposed to sublethal zinc and mercury. Bull Environ Contam Toxicol 63:343-349. https://doi.org/10.1007/s001289900986
  51. Asztalos B, Nemcsok J (1985) Effect of pesticides on the LDH activity and isoenzyme pattern of carp (Cyprinus carpio L.) sera. Comp Biochem Physiol C Comp Pharmacol Toxicol 82:217-219. https://doi.org/10.1016/0742-8413(85)90233-6
  52. Gill TS, Pande J, Tewari H (1990) Sublethal effects of an organophosphorus insecticide on certain metabolite levels in a freshwater fish, Puntius conchonius Hamilton. Pestic Biochem Physiol 36:290-299. https://doi.org/10.1016/0048-3575(90)90038-4
  53. Vijayavel K, Balasubramanian M (2007) Interaction of potash and decis in the ecophysiology of a freshwater fish Oreochromis mossambicus. Ecotoxicol Environ Saf 66:154-158. https://doi.org/10.1016/j.ecoenv.2005.12.005