Acknowledgement
Fundamental Research Funds for the Central Universities (19CX02053A); National Training Program of Innovation and Entrepreneurship for Undergraduates (202111041, 20190472, 202012077).
References
- P. Sun, M. Wang, L. Liu, L. Jiao, W. Du, F. Xia, M. Liu, W. Kong, L. Dong, and M. Yun, "Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers," Appl. Surf. Sci. 475, 342-347 (2019). https://doi.org/10.1016/j.apsusc.2018.12.283
- S. Lee, Y. Jo, S. Hong, D. Kim, and H. W. Lee, "Multilayered graphene electrode using one-step dry transfer for optoelectronics," Curr. Opt. Photonics 1, 7-11 (2017). https://doi.org/10.3807/COPP.2017.1.1.007
- D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nat. Nanotechnol. 3, 101-105 (2008). https://doi.org/10.1038/nnano.2007.451
- B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers," J. Appl. Polym. Sci. 131, 39628 (2014).
- K. Sarkar, M. Hossain, P. Devi, K. D. M. Rao, and P. Kumar, "Self-powered and broadband photodetectors with GaN: layered rGO hybrid heterojunction," Adv. Mater. Interfaces 6, 1900923 (2019). https://doi.org/10.1002/admi.201900923
- D. Dutta, S. K. Hazra, J. Das, C. K. Sarkar, and S. Basu, "Studies on p-TiO>2/n-graphene heterojunction for hydrogen detection," Sens. Actuator B: Chem. 212, 84-92 (2015). https://doi.org/10.1016/j.snb.2015.02.009
- Y.-H. Shih, Y.-L. Chen, J.-H. Tan, S. H. Chang, W.-Y. Uen, S.-L. Chen, M.-Y. Lin, Y.-C. Chen, and W.-C. Tu, "Low-power, large-area and high-performance CdSe quantum dots/reduced graphene oxide photodetector," IEEE Access 8, 95855-95863 (2020). https://doi.org/10.1109/access.2020.2995676
- Y. Du, Q. Xue, Z. Zhang, F. Xia, Z. Liu, and W. Xing, "Enhanced hydrogen gas response of Pd nanoparticles-decorated single walled carbon nanotube film/SiO>2/Si heterostructure," AIP Adv. 5, 027136 (2015). https://doi.org/10.1063/1.4913953
- D.-T. Phan and G.-S. Chung, "P-n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si (111)," J. Phys. Chem. Solids 74, 1509-1514 (2013). https://doi.org/10.1016/j.jpcs.2013.02.007
- H.-M. Ju, S. H. Huh, S.-H. Choi, and H.-L. Lee, "Structures of thermally and chemically reduced graphene," Mater. Lett. 64, 357-360 (2010). https://doi.org/10.1016/j.matlet.2009.11.016
- J. Wu, X. Shen, L. Jiang, K. Wang, and K. Chen, "Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites," Appl. Surf. Sci. 256, 2826-2830 (2010). https://doi.org/10.1016/j.apsusc.2009.11.034
- L. Tang, H. Feng, J. Cheng, and J. Li, "Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing," Chem. Commun. 46, 5882-5884 (2010). https://doi.org/10.1039/c0cc01212b
- X. Li, W. Feng, X. Zhang, S. Lin, Y. Chen, C. Chen, S. Chen, W. Wang, and Y. Zhang, "Facile fabrication of laser-scribed-graphene humidity sensors by a commercial DVD drive," Sensors Actuat. B: Chem. 321, 128483 (2020). https://doi.org/10.1016/j.snb.2020.128483
- C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, and L.-J. Li, "Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors," ACS nano 4, 5285-5292 (2010). https://doi.org/10.1021/nn101691m
- L. Hao, Y. Liu, W. Gao, Z. Han, Q. Xue, H. Zeng, Z. Wu, J. Zhu, and W. Zhang, "Electrical and photovoltaic characteristics of MoS>2/Si p-n junctions," J. Appl. Phys. 117, 114502 (2015). https://doi.org/10.1063/1.4915951
- M. Yalcin, D. Ozmen, and F. Yakuphanoglu, "Perovskite cobaltates/p-silicon heterojunction photodiodes," J. Alloys Compd. 796, 243-254 (2019). https://doi.org/10.1016/j.jallcom.2019.05.014
- M. Zhu, X. Li, Y. Guo, X. Li, P. Sun, X. Zang, K. Wang, M. Zhong, D. Wu, and H. Zhu, "Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes," Nanoscale 6, 4909-4914 (2014). https://doi.org/10.1039/c4nr00056k
- L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, "Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector," ACS Appl. Mater. Interfaces 5, 9362-9366 (2013). https://doi.org/10.1021/am4026505
- L. Z. Hao, W. Gao, Y. J. Liu, Z. D. Han, Q. Z. Xue, W. Y. Guo, J. Zhu, and Y. R. Li, "High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells," Nanoscale 7, 8304-8308 (2015). https://doi.org/10.1039/C5NR01275A
- M. Patel, I. Mukhopadhyay, and A. Ray, "Study of the junction and carrier lifetime properties of a spray-deposited CZTS thin-film solar cell," Semicond. Sci. Technol. 28, 055001 (2013). https://doi.org/10.1088/0268-1242/28/5/055001
- D. Seo, W.-B. Kwon, S. C. Kim, and C.-S. Park, "Frequency response estimation of 1.3 ㎛ waveguide integrated vertical PIN Type Ge-on-Si photodetector based on the analysis of fringing field in intrinsic region," Curr. Opt. Photonics 3, 510-515 (2019). https://doi.org/10.3807/COPP.2019.3.6.510
- T. Yang, L. Du, C. Zhai, Z. Li, Q. Zhao, Y. Luo, D. Xing, and M. Zhang, "Ultrafast response and recovery trimethylamine sensor based on α-Fe2O3 snowflake-like hierarchical architectures," J. Alloys Compd. 718, 396-404 (2017). https://doi.org/10.1016/j.jallcom.2017.05.227
- S. Kim, D. H. Shin, J. Kim, C. W. Jang, S. S. Kang, J. M. Kim, J. H. Kim, D. H. Lee, J. H. Kim, S.-H. Choi, and S. W. Hwang, "Energy transfer from an individual silica nanoparticle to graphene quantum dots and resulting enhancement of photodetector responsivity," Sci. Rep. 6, 27145 (2016). https://doi.org/10.1038/srep27145
- X. Fang, L. Hu, K. Huo, B. Gao, L. Zhao, M. Liao, P. K. Chu, Y. Bando, and D. Golberg, "New ultraviolet photodetector based on individual Nb2O5 nanobelts," Adv. Funct. Mater. 21, 3907-3915 (2011). https://doi.org/10.1002/adfm.201100743
- W. Zhao, L. Liu, M. Xu, X. Wang, T. Zhang, Y. Wang, Z. Zhang, S. Qin, and Zheng Liu, "Single CdS nanorod for high responsivity UV-visible photodetector," Adv. Opt. Mater. 5, 1700159 (2017). https://doi.org/10.1002/adom.201700159
- N. Prakash, M. Singh, G. Kumar, A. Barvat, K. Anand, P. Pal, S. P. Singh, and S. P. Khanna, "Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes," Appl. Phys. Lett. 109, 242102 (2016). https://doi.org/10.1063/1.4971982
- P. S. Abid, C. M. Julien, and S. S. Islam, "WS>2 quantum dots on e-textile as a wearable UV photodetector: how well reduced graphene oxide can serve as a carrier transport medium?," ACS Appl. Mater. Interfaces 12, 39730-39744 (2020). https://doi.org/10.1021/acsami.0c08028
- X. X. Yu, H. Yin, H. X. Li, H. Zhao, C. Li, and M. Q. Zhu, "A novel high-performance self-powered UV-vis-NIR photodetector based on a CdS nanorod array/reduced graphene oxide film heterojunction and its piezo-phototronic regulation," J. Mater. Chem. C 6, 630-636 (2018). https://doi.org/10.1039/C7TC05224C
- P. Joshna, S. R. Gollu, P. M. P. Raj, B. V. V. S. N. P. Rao, P. Sahatiya, and S. Kundu, "Plasmonic Ag nanoparticles arbitrated enhanced photodetection in p-NiO/n-rGO heterojunction for future self-powered UV photodetectors," Nanotechnology 30, 365201 (2019). https://doi.org/10.1088/1361-6528/ab261b
- S. Liu, B. Li, H. Kan, H. Liu, B. Xie, X. Zhu, Y. Hu, and S. Jiang, "Low temperature in-situ preparation of reduced graphene oxide/ZnO nanocomposites for highly sensitive photodetectors," J. Mater. Sci.: Mater. Electron. 28, 9403-9409 (2017). https://doi.org/10.1007/s10854-017-6681-4
- E. Monroy, F. Omnes, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors," Semicond. Sci. Technol. 18, R33-R51 (2003). https://doi.org/10.1088/0268-1242/18/1/305
- G. Li, L. Liu, G. Wu, W. Chen, S. Qin, Y. Wang, and T. Zhang, "Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction," Small 12, 5019-5026 (2016). https://doi.org/10.1002/smll.201600835
- W. Deng, Y. Wang, C. You, Y. Chen, and Y. Zhang, "Field enhanced in-plane homostructure in a pure MoSe2 phototransistor for the efficient separation of photo-excited carriers," J. Mater. Chem. C 7, 1182-1187 (2019). https://doi.org/10.1039/C8TC04783A