DOI QR코드

DOI QR Code

Voltage balancing control of a series-resonant DAB converter with a virtual line shaft

  • Lee, Sangmin (School of Electrical and Computer Engineering, University of Seoul) ;
  • Hong, Woonjung (School of Electrical and Computer Engineering, University of Seoul) ;
  • Kim, Taewan (School of Electrical and Computer Engineering, University of Seoul) ;
  • Kim, Gil-Dong (Korea Railroad Research Institute (KRRI)) ;
  • Lee, Eun S. (School of Electrical Engineering, Hanyang University, ERICA Campus) ;
  • Lee, Seung-Hwan (School of Electrical and Computer Engineering, University of Seoul)
  • Received : 2021.11.04
  • Accepted : 2022.05.13
  • Published : 2022.08.20

Abstract

A multilevel series-resonant dual-active bridge (SRDAB) converter is widely used in high-voltage and high-power systems to reduce the voltage stress of inverter switches. However, an imbalance in the DC-link voltage between the DAB converters can cause system failure because inverter switches can be destroyed by voltage and current stress. In this study, a virtual line shaft (VLS) control is proposed to achieve output voltage and power balance between SRDAB converter modules. The gains of the controllers are selected using the frequency responses of the controllers. The disturbance rejection performance of the virtual line shaft and cross-coupling controller is compared. To evaluate the performance of the controllers, the time-domain responses of the VLS and cross-coupling controllers are compared. The simulated and experimental results show that the output voltages of the SRDAB modules are well balanced. The proposed voltage controller regulates the output voltage of an SRDAB module within 20 ms. The output voltages of the SRDAB modules are synchronized well even under asynchronous load changes.

Keywords

Acknowledgement

This research was supported by a grant from R&D program(PK2203F1) of the Korea Railroad Research Institute.

References

  1. Zhang, X., Green, T.C.: The modular multilevel converter for high step-up ratio DC-DC conversion. IEEE Trans. Ind. Electron. 62(8), 4925-4936 (2015) https://doi.org/10.1109/TIE.2015.2393846
  2. Denniston, N., Massoud, A.M., Ahmed, S., Enjeti, P.N.: Multiple-module high-gain high-voltage DC-DC transformers for offshore wind energy systems. IEEE Trans. Ind. Electron. 58(5), 1877-1886 (2011) https://doi.org/10.1109/TIE.2010.2053340
  3. Cao, L., Loo, K.H., Lai, Y.M.: Output-impedance shaping of bidirectional DAB DC-DC converter using double-proportional-integral feedback for near-ripple-free DC bus voltage regulation in renewable energy systems. IEEE Trans. Power Electron. 31(3), 2187-2199 (2016) https://doi.org/10.1109/TPEL.2015.2433535
  4. He, P., Khaligh, A.: Comprehensive analyses and comparison of 1 KW Isolated DC-DC Converters for Bidirectional EV Charging Systems. IEEE Trans. Transp. Electrif. 3(1), 147-156 (2017) https://doi.org/10.1109/TTE.2016.2630927
  5. Song, W., Zhong, M., Luo, S., Yang, S.: Model predictive power control for bidirectional series-resonant isolated DC-DC converters with fast dynamic response in locomotive traction system. IEEE Trans. Transp. Electrif. 6(3), 1326-1337 (2020) https://doi.org/10.1109/tte.2020.3006135
  6. Zeng, J., Qiao, W., Qu, L.: An isolated three-port bidirectional DC-DC converter for photovoltaic systems with energy storage. IEEE Trans. Ind. Appl. 51(4), 3493-3503 (2015) https://doi.org/10.1109/TIA.2015.2399613
  7. Su, G.J., Tang, L.: A multiphase, modular, bidirectional, triple-voltage DC-DC converter for hybrid and fuel cell vehicle power systems. IEEE Trans. Power Electron. 23(6), 3035-3046 (2008) https://doi.org/10.1109/TPEL.2008.2005386
  8. Khan, M.A., Ahmed, A., Husain, I., Sozer, Y., Badawy, M.: Performance analysis of bidirectional DC-DC converters for electric vehicles. IEEE Trans. Ind. Appl. 51(4), 3442-3452 (2015) https://doi.org/10.1109/TIA.2015.2388862
  9. Grbovic, P.J., Delarue, P., Le Moigne, P., Bartholomeus, P.: A bidirectional three-level DC-DC converter for the ultracapacitor applications. IEEE Trans. Ind. Electron. 57(10), 3415-3430 (2010) https://doi.org/10.1109/TIE.2009.2038338
  10. Wang, J., Wu, H., Yang, T., Zhang, L., Xing, Y.: Bidirectional three-phase DC-AC converter with embedded DC-DC converter and carrier-based PWM strategy for wide voltage range applications IEEE Trans. Ind. Electron. 66(6), 4144-4155 (2019) https://doi.org/10.1109/tie.2018.2866080
  11. Corradini, L., Seltzer, D., Bloomquist, D., Zane, R., Maksimovic, D., Jacobson, B.: Minimum current operation of bidirectional dual-bridge series resonant DC/DC converters. IEEE Trans. Power Electron. 27(7), 4144-4155 (2012)
  12. Li, X., Bhat, A.K.S.: Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC Converter. IEEE Trans. Power Electron. 25(4), 850-862 (2010) https://doi.org/10.1109/TPEL.2009.2034662
  13. Corradini, L., Seltzer, D., Bloomquist, D., Zane, R., Maksimovic, D., Jacobson, B.: Zero voltage switching technique for bidirectional DC/DC converters. IEEE Trans. Power Electron. 29(4), 1585-1594 (2014) https://doi.org/10.1109/TPEL.2013.2265019
  14. Wu, J., Li, Y., Sun, X., Liu, F.: A new dual-bridge series resonant DC-DC converter with dual tank. IEEE Trans. Power Electron. 33(5), 3884-3897 (2018)
  15. Wu, J., Wen, P., Sun, X., Yan, X.: Reactive power optimization control for bidirectional dual-tank resonant DC-DC converters for fuel cells systems. IEEE Trans. Power Electron. 35(9), 9202-9214 (2020) https://doi.org/10.1109/tpel.2020.2971733
  16. Pan, Y., et al.: A dual-loop control to ensure fast and stable fault-tolerant operation of series resonant DAB converters. IEEE Trans. Power Electron. 35(10), 10994-11012 (2020) https://doi.org/10.1109/tpel.2020.2975348
  17. Kenzelmann, S., Rufer, A., Dujic, D., Canales, F., De Novaes, Y.R.: Isolated DC/DC structure based on modular multilevel converter. IEEE Trans. Power Electron. 30(1), 89-98 (2015) https://doi.org/10.1109/TPEL.2014.2305976
  18. Grbovic, P.J.: Master/slave control of input-series- and output-parallel-connected converters: concept for low-cost high-voltage auxiliary power supplies. IEEE Trans. Power Electron. 24(2), 316-328 (2009) https://doi.org/10.1109/TPEL.2008.2006975
  19. Mazumder, S.K., Tahir, M., Acharya, K.: Master-slave current-sharing control of a parallel DC-DC converter system over an RF communication interface. IEEE Trans. Ind. Electron. 55(1), 59-66 (2008) https://doi.org/10.1109/TIE.2007.896138
  20. Chen, H.C., Lu, C.Y., Rout, U.S.: Decoupled master-slave current balancing control for three-phase interleaved boost converters. IEEE Trans. Power Electron. 33(5), 3683-3687 (2018) https://doi.org/10.1109/tpel.2017.2760887
  21. Hao, Z., Li, X., Cao, X., Gan, Y., Yu, Q., Zhang, Q.: A cross-coupled control strategy of phase difference for electric vibration damping actuator. IEEE Access 8, 213887-213898 (2020) https://doi.org/10.1109/ACCESS.2020.3038952
  22. Zhu, C., Tu, Q., Jiang, C., Pan, M., Huang, H.: A cross coupling control strategy for dual-motor speed synchronous system based on second order global fast terminal sliding mode control. IEEE Access 8, 217967-217976 (2020) https://doi.org/10.1109/ACCESS.2020.3042256
  23. Anibal Valenzuela, M., Lorenz, R.D.: Electronic line-shafting control for paper machine drives. IEEE Trans. Ind. Appl. 37(1), 158-164 (2001) https://doi.org/10.1109/28.903141
  24. Anderson, R.G., Meyer, A.J., Valenzuela, M.A., Lorenz, R.D.: Web machine coordinated motion control via electronic line-shafting. IEEE Trans. Ind. Appl. 37(1), 247-254 (2001) https://doi.org/10.1109/28.903157
  25. Geng, Q., Liu, W., Wang, H., Zhou, Z., Zhang, G.: An improved electronic line shafting control for multimotor drive system based on sliding mode observer. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/7064141
  26. Lee, S., Lee, S.H.: Dq synchronous reference frame model of a series-series tuned inductive power transfer system. IEEE Trans. Ind. Electron. 67(12), 10325-10334 (2020) https://doi.org/10.1109/tie.2019.2958307
  27. Cui, S., Kim, S., Jung, J.J., Sul, S.K.: A comprehensive cell capacitor energy control strategy of a modular multilevel converter (MMC) without a stif DC bus voltage source. IEEE Appl Power Electron (2014). https://doi.org/10.1109/APEC.2014.6803370
  28. Blasko, V., Kaura, V., Niewiadomski, W.: Sampling of discontinuous voltage and current signals in electrical drives: a system approach. IEEE Trans. Ind. Appl. 34(5), 1123-1130 (1998) https://doi.org/10.1109/28.720453