Acknowledgement
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2017-0-00072, 초실감 테라미디어를 위한 AV 부호화 및 LF 미디어 원천기술 개발).
References
- Cisco, Cisco Annual Internet Report (2018-2023) White Paper, Mar. 2020.
- A. Skodras, C. Christopoulos and T. Ebrahimi, "The JPEG 2000 still image compression standard," Signal Processing Magazine, Vol.18, No.5, pp 36-58, 2001. doi: https://doi.org/10.1109/79.952804
- B. Bross, J. Chen, S. Liu and Y.-K. Wang, "Versatile video coding (Draft 10)," JVET-S2001, Jul. 2020.
- Wei Jia, et al "Residual-guided In-loop Filter Using Convolution Neural Network," ACM Trans. Multimedia Comput. Communications, and Applications, 2021 doi: https://doi.org/10.1145/3460820
- Li, Daowen, and Lu Yu. "An in-loop filter based on low-complexity CNN using residuals in intra video coding," IEEE International Symposium on Circuits And Systems 2019. doi: https://doi.org/10.1109/ISCAS.2019.8702443
- Dai, Yuanying, Dong Liu, and Feng Wu. "A convolutional neural network approach for post-processing in HEVC intra coding," International Conference on Multimedia Modeling, Springer, Cham, pp. 28-39, 2017. doi: https://doi.org/10.1007/978-3-319-51811-4_3
- Huang, Zhijie, et al. "An efficient QP variable convolutional neural network based in-loop filter for intra coding." IEEE Data Compression Conference, pp. 33-42, 2021. doi: https://doi.org/10.1109/dcc50243.2021.00011
- Y. Li, L. Zhang, K. Zhang, "Conditional in-loop filter with parameter selection", JVET-V0101, Apr. 2021.
- Wang, Ming-Ze, et al. "Attention-based dual-scale CNN in-loop filter for versatile video coding," IEEE Access, Vol.7, pp. 145214-145226, 2019. doi: https://doi.org/10.1109/access.2019.2944473
- Xu, Xiaoyu, et al. "Dense inception attention neural network for in-loop filter," IEEE Picture Coding Symposium, pp. 1-5, 2019. doi: https://doi.org/10.1109/pcs48520.2019.8954499
- Z. Dai, et al, "AHG11: Neural network-nased adaptive model selection for CNN in-loop filtering", JVET-X0126, Oct. 2021.
- Jia, Chuanmin, et al. "Content-aware convolutional neural network for in-loop filtering in high efficiency Video coding," IEEE Transactions on Image Processing, Vol.28, No.7, 2019. doi: https://doi.org/10.1109/tip.2019.2896489
- Li, Yue, Li Zhang, and Kai Zhang. "IDAM: Iteratively trained deep in-loop filter with adaptive model selection," ACM Transaction on Multimedia Computing, Communications, and Application, 2022. doi: https://doi.org/10.1145/3529107
- Y. Li, K. Zhang, and L. Zhang. "EE1-1.2: Test on deep in-loop filter with adaptive model selection and external attention," JVET-X0065, Oct, 2021.
- L. Wang, X. Xu, and S. Liu, "AHG11: Neural network based in-loop filter with adaptive model selection," JVET-X0054, Oct. 2021.
- W. Lin, et al. "Partition-aware adaptive switching neural networks for post-processing In HEVC," IEEE Transactions on Multimedia, Vol.22, No.11, pp. 2749-2763, 2019. doi: https://doi.org/10.1109/tmm.2019.2962310
- L. van Der Maaten, and G. Hinton. "Visualizing data using t-SNE," Journal of Machine Learning Research, Vol.9, No.11, 2008.
- Lam, Yat-Hong, et al. "Efficient adaptation of neural network filter for video compression." Adaptive Model Selection," ACM International Conference on Multimedia, pp. 358-366, 2020. doi: https://doi.org/10.1145/3394171.3413536
- M. Santamaria, et al. "AHG11: Hannuksela, Content-adaptive post-processing filter," JVET-Y0059, Jan. 2022.
- M. Santamaria, et al. "AHG11: Content-adaptive neural network post-filte," JVET-Z0082, Apr. 2022.
- Lee. So Yoon, et al. "Offset-based in-loop filtering with a deep network in HEVC," IEEE Access, Vol.8, pp. 213958-213967, 2020. doi: https://doi.org/10.1109/access.2020.3040751
- Kong, Lingyi, et al. "Guided CNN restoration with explicitly signaled linear combination," IEEE International Conference on Image Processing, pp. 3379-3383, 2020. doi: https://doi.org/10.1109/icip40778.2020.9190807
- Bordes, Philippe, et al. "Revisiting the sample adaptive offset post-filter of VVC with neural-networks," IEEE Picture Coding Symposium, pp. 1-5, 2021. doi: https://doi.org/10.1109/pcs50896.2021.9477457