DOI QR코드

DOI QR Code

Effect of Diameter and Thickness on the Failure Location and Orientation of 90° Elbows Under In-plane Mode Cyclic Bending

In-plane 모드 반복굽힘 조건에서 90° 엘보우의 손상 위치와 방향에 미치는 직경과 두께 영향

  • 홍진의 (조선대학교 원자력공학과) ;
  • 김진원 (조선대학교 원자력공학과)
  • Received : 2022.12.15
  • Accepted : 2022.12.23
  • Published : 2022.12.30

Abstract

This study investigates the effect of the diameter and thickness on crack initiation location and orientation of 90° elbows under in-plane mode displacement-controlled cyclic bending loads. Finite element (FE) analysis of cyclic failure test is conducted for elbow specimens under in-plane mode displacement-controlled cyclic bending to identify the parameters affecting crack location and orientation. Furthermore, parametric FE analysis of the pipe elbows with various pipe nominal sizes and Schedules is performed, and the crack location and orientation from the results of FE analysis are determined. It is found that the crack location and orientation in the pipe elbows are determined mianly by the radius to thickness ratio of pipe elbows (Rm/t). It is also found that the presence of internal pressure slightly increases the value of Rm/t at which the failure mode changes.

Keywords

Acknowledgement

본 연구는 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20193110100020).

References

  1. ASME BPVCode Sec. III, 2019, "Rules for Construction of Nuclear Facility Components," Americamn Society of Mechanical Engineers, NY.
  2. IAEA, 2016, "Consideration of the application of the IAEA safety requirements for the design of nuclear power plants," IAEA TECDOC-1791.
  3. OECD/NEA, 2015, "Interim Report on Metallic Components Margins under High Seismic Loads," NEA/CSNI/R(2015)8.
  4. Slagies, G.C., 1997, "Evaluation of Seismic Response Data for Piping," WRC Bulletin 423. ISSN 0043-2326
  5. Nakamura, I., 2019, "Numerical Investigation on Strength of Tee Pipes under In-plane/Out-of-Plane Cyclic Loading," Proc. of the ASME 2019 Conference, San Antonio, TX, PVP2019-93559. https://doi.org/10.1115/PVP2019-93559
  6. USNRC, 2008, "Seismic Analysis of Large-Scale Piping Systems for the JNES-NUPEC Ultimate Strength Piping Test Program," U.S. Nuclear Regulatory Commission, Washington, DC., NUREG/CR-6983
  7. Nakamura, I. and Kasahara, N., 2017, "Excitation Tests on Elbow Pipe Specimens to Investigate Failure Behavior under Excessive Seismic Loads," J. Press. Vess.-T ASME, Vol. 139, No. 6, 061802, http://doi.org/10.1115/1.4037952
  8. Warakabe, T., Tsukimori, K., Kitamura, S., and Morishita, M., 2016, "Ultimate Strength of a Thin Wall Elbow for Sodium Cooled Fast Reactors under Seismic Loads," J. Press. Vess.-T ASME, Vol. 138, No. 3, 021801. http://doi.org/10.1115/1.4031721
  9. Ravikiran, A., Dubey, P.N., Agrawal, M.K., Reddy, G.R., Singh, R.K., and Vaze, K. K., 2015, "Experimental and Numerical Studies of Ratcheting in a Pressurized Piping System under Seismic Load," J. Press. Vess.-T ASME, Vol. 137, No. 3, 031011. http://doi.org/10.1115/1.402819
  10. Gupta, S.K., Goyal, S., Bhasin, V., Vaze, K.K., Ghosh, A.K., and Kushwaha, H.S., 2009, "Racheting-Fatigue Failure of Pressurized Elbows made of Carbon Steel," Proc. of SMiRT-20 Conference, Espoo, Finland, Aug. 9-14, Paper 1861.
  11. JSME, 2019, "Code for Nuclear Power Generation Facilities: Rules on Design and Construction for Nuclear Power Plants," JSME S NC1, NC-CC-008 (in Japanese)
  12. Varelis, G.E., Karamanos, S.A., and Gresnigt, A.M., 2013, "Pipe Elbows Under Strong Cyclic Loading," J. Press. Vess.-T ASME, Vol. 135, No. 2, 011207. http://doi.org/10.1115/1.4007293
  13. Jeon, B.G., Kim, S.W., Choi, H.S., Park, D.U., and Kim, N.S., 2017, "A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading," Nucl. Eng. Tech., Vol. 49, No.1, pp. 245-253. https://doi.org/10.1016/j.net.2016.07.006
  14. Hong, J.N., Kim, S.E., Kim, J.W., Lee, D.Y., and Kim, Y.J., 2022, "Very Low-Cycle Fatigue Behaviours of Pipe Elbows: Part I - Experiment of Displacement-Controlled Cyclic Bending," Thin-Walled Struc. (submitted)
  15. ABAQUS. version 2018, 2018, User's manual, Inc. and Dassault systems.
  16. Chaboche, J. L., 1991, "On some modifications of kinematic hardening to improve the description of ratcheting effects," Int. J. Plasticity, Vol. 7, pp. 661-667. http://doi.org/10.1016/0749-6419(91)90050-9
  17. Takahashi, K., Watanabe, S., Ando, K., Urabe, Y., Hidaka, A., Hisatsune, M., and Miyazaki, K., 2009, "Low cycle fatigue behaviors of elbow pipe with local wall thinning," Nucl. Eng. Des., Vol. 239, No. 12, pp. 2719-2727. https://doi.org/10.1016/j.nucengdes.2009.09.011
  18. Balan, C. and Redekop, D., 2005, "The effect of bi-directional loading on fatigue assessment of pressurized piping elbows with local thinned areas," Int. J. Press. Ves. Pip., Vol. 82, No. 3, pp. 235-242. https://doi.org/10.1016/j.ijpvp.2004.07.020
  19. Karamanos, S.A., Giakoumatos, E., Gresnigt, and A.M., 2003, "Nonlinear response and failure of steel elbows under in-plane bending and pressure," J. Press. Vess.-T ASME,, Vol. 125, No. 4, pp. 393-402. https://doi.org/10.1115/1.1613949
  20. Kim, J.Y., Lee, J.M., Kim, Y.J., and Kim, J.W., 2022, "Analysis of the Elbow Thickness Effect on Crack Location and Propagation Direction via Elastic-Plastic Element Analysis," Trans. of the KPVP, Vol. 18, No. 1, pp. 26-35. http://dx.doi.org/10.20466/KPVP.2022.18.1.026
  21. Stepens, R.I., Fatemi, A., Stepens, R.R., and Fuchs, H.O., 2001, Metal Fatigue in Engineering, 2nd ed., John Wiley & Sons InC.