DOI QR코드

DOI QR Code

의료 데이터 산업을 위한 비정형 데이터 비식별화 정책에 관한 연구

A study on the policy of de-identifying unstructured data for the medical data industry

  • 이선진 (성신여자대학교 미래융합기술공학과) ;
  • 박태림 (성신여자대학교 미래융합기술공학과) ;
  • 김소희 (신세계아이앤씨 정보보안팀) ;
  • 오영은 (라인비즈플러스 viz security) ;
  • 이일구 (성신여자대학교 융합보안공학과 / 미래융합기술공학과)
  • 투고 : 2022.06.29
  • 심사 : 2022.09.27
  • 발행 : 2022.10.31

초록

빅데이터 기술이 발전하면서 데이터가 전 산업의 혁신 성장을 가속하는 초연결 지능화 사회로 빠르게 진입하고 있다. 고품질의 다양한 데이터를 보유하고 활용하는 융복합 산업이 새로운 성장 동력으로 자리매김하고 있으며, 다양한 전통 산업군에 빅데이터가 융합되어 데이터 기반의 혁신을 통해 디지털 전환이 이루어지고 있다. 특히 의료 분야에서는 전자의무기록 데이터와 같은 정형 데이터와 CT, MRI 등의 비정형 의료 데이터를 함께 활용함으로써, 질병 예측 및 진단의 정확도를 높이고 있다. 현재 의료 산업에서 비정형 데이터의 중요성과 규모는 나날이 증가하고 있지만, 종래의 데이터 보안 기술과 정책은 정형 데이터 중심이며, 비정형 데이터의 보안성과 활용성에 대한 고려는 미비하다. 향후 빅데이터를 활용한 진료가 활성화되려면 데이터의 다양성과 보안성이 데이터 구축, 유통, 활용 단계에서 내재화되고 유기적으로 연계되어야 한다. 본 논문에서는 국내외 데이터 보안 제도와 기술 현황을 분석한다. 이후 의료 분야에서 비정형 데이터가 활발히 사용될 수 있도록 비식별조치 가이드라인에 비정형 데이터 중심의 비식별 기술과 산업에서의 기술 적용 사례를 추가하고, 비정형 데이터에 대한 개인정보 판단 기준을 수립할 것을 제안한다. 더 나아가 개인정보를 침해하지 않고, 비정형 데이터에 활용할 수 있는 객체 특징 기반의 식별 ID를 제안한다.

With the development of big data technology, data is rapidly entering a hyperconnected intelligent society that accelerates innovative growth in all industries. The convergence industry, which holds and utilizes various high-quality data, is becoming a new growth engine, and big data is fused to various traditional industries. In particular, in the medical field, structured data such as electronic medical record data and unstructured medical data such as CT and MRI are used together to increase the accuracy of disease prediction and diagnosis. Currently, the importance and size of unstructured data are increasing day by day in the medical industry, but conventional data security technologies and policies are structured data-oriented, and considerations for the security and utilization of unstructured data are insufficient. In order for medical treatment using big data to be activated in the future, data diversity and security must be internalized and organically linked at the stage of data construction, distribution, and utilization. In this paper, the current status of domestic and foreign data security systems and technologies is analyzed. After that, it is proposed to add unstructured data-centered de-identification technology to the guidelines for unstructured data and technology application cases in the industry so that unstructured data can be actively used in the medical field, and to establish standards for judging personal information for unstructured data. Furthermore, an object feature-based identification ID that can be used for unstructured data without infringing on personal information is proposed.

키워드

과제정보

본 연구는 2022년도 정부(과학기술정보통신부의 재원으로 한국연구재단의 지원(No. 2020R1F1A1061107)과 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0008703, 2022년 산업혁신인재성장지원사업), 과학기술정보통신부 및 정보통신기획평가원의 ICT혁신인재4.0 사업의 연구결과로 수행되었습니다. (IITP-2022-RS-2022-00156310).

참고문헌

  1. 김지은, 황정민, 홍영주, 김수경, "디지털 헬스 산업분석및전망연구", KHIDI, 2020. https://www.khidi.or.kr/fileDownload?titleId=449375&fileId=1&fileDownType=C¶mMenuId=MENU02686 [Accessed: 2021-April-07]. 
  2. 보건복지부, "보건 의료 데이터.인공지능 혁신전략," pp. 1-47, Jun. 2021. https://eiec.kdi.re.kr/policy/materialView.do?num=214544&topic=P&pp=20&datecount=&recommend=&pg= [Accessed: 2021-Jun-03]. 
  3. 신태섭, "보건의료 데이터 활용 가이드라인의 의미와 과제," 의료법학, 22(3), pp. 31-55, 2021. https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002761333 [Accessed: 2022-Mar-03]. 
  4. 보건복지부, "의료법," Dec. 2020. https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EC%9D%98%EB%A3%8C%EB%B2%95 [Accessed: 27-Feb-2022]. 
  5. K. Patel and G. B. Jethava, "Privacy Preserving Techniques for Big Data: A Survey," 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 194-199, Sep. 2018. 
  6. 하만석, 안현철, "정형 데이터와 비정형 데이터를 동시에 고려하는 기계학습 기반의 직업훈련 중도 탈락 예측 모형," 한국콘텐츠학회논문지, 19(1), pp. 1-15, Jan. 2019.  https://doi.org/10.5392/JKCA.2019.19.01.001
  7. Grand View Research, "Preclinical Imaging Market Analysis By Product Type(Devices: CT, MRI, PET/SPECT, Multi-model, Optical, Ultrasound, Photoacoustic(PAT), Reagents and Services) And Segment Forecasts To 2024," pp. 1-87, Jun. 2016. https://www.grandviewresearch.com/industry-analysis/preclinical-imaging-market [Accessed: 27-Feb-2022]. 
  8. 박민영, 최민경 , "의료정보의 관리와 비식별화에 관한 법적 과제," 유럽헌법학회, (21), pp. 495-534, Aug. 2016. 
  9. 김상광, 김선경 , "빅데이터 활용에 영향을 미치는 개인정보 규제요인과 데이터 결합요인의 탐색," 정보보호학회논문지, 30(2), pp. 287-304, Apr. 2020.  https://doi.org/10.13089/JKIISC.2020.30.2.287
  10. 한국인터넷진흥원, "개인정보 비식별 조치 가이드라인," pp. 1-80, Jun. 2016. https://www.privacy.go.kr/cmm/fms/FileDown.do?atchFileId=FILE_000000000827059&fileSn=0 [Accessed: 27-Feb-2022]. 
  11. V. Bhagwan, T. Grandison, and C. Maltzahn, "Recommendation-Based De-identification: A Practical Systems Approach towards De-identification," 2012 IEEE Eighth World Congress on Services, pp. 155-162, Aug. 2012. 
  12. 전승재, 권헌영 "개인정보, 가명정보, 익명정보에 관한 4개국 법제 비교분석," 정보법학, 22(3), pp. 183-218, Dec. 2018. 
  13. 손형섭, "한국 개인정보보호법과 일본 개인정보보호법의 비교 분석 - ICT산업 생태계에 미치는 영향을 중심으로 -," 2019 NAVER Privacy White Paper. https://privacy.naver.com/download/2019_chapter2_JapanPersonalInformationProtectionAct.pdf [Accessed: 27-Feb-2022]. 
  14. 개인정보 보호위원회, "개인정보의 범위에 관한 연구," pp. 1-335, Oct. 2014. http://pipc.go.kr/cmm/fms/FileDown.do;jsessionid=AFF7450287C3709AB913DD347E4355F5?atchFileId=FILE_000000000499259&fileSn=0 [Accessed: 27-Feb-2022]. 
  15. ISO/IEC, "Privacy enhancing data de-identification terminology and classification of techniques," ISO/IEC 20889, pp. 1-46, Nov. 2018. https://www.iso.org/standard/69373.html [Accessed: 27-Feb-2022]. 
  16. 개인정보 보호위원회, "가명정보 처리 가이드라인," pp. 1-56, Sep. 2020. https://www.pipc.go.kr/np/cop/bbs/selectBoardArticle.do?bbsId=BS217&mCode=D010030000&nttId=8000 [Accessed: 02-May-2022]. 
  17. 한국인터넷진흥원, "신규 ICT 환경의 해외 개인정보 활용사례 및 법제동향 분석연구," pp. 1-214, Oct. 2016. https://www.kisa.or.kr/204/form?postSeq=022686&lang_type=KO&page= [Accessed: 29-Dec-2020]. 
  18. S. Garfinkel, "De-Identification of Personal Information," NISTIR 8053, pp. 1-46, Oct. 2015. 
  19. 이인경, 엄수현, 아로샤, 자파르, 이우기, "경로정보 개인 비식별화를 위한 K-익명성의 K값에 따른 데이터 활용과 익명성의 상충관계," 한국정보과학회 학술발표논문집, pp. 1241-1242, Jun. 2018. 
  20. 이대희, "개인정보 보호 및 활용 방안으로서의 가명.비식별정보 개념의 연구," 정보법학, 21(3), pp. 217-251, Dec. 2017. 
  21. Department of Health & Human Services, "Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule," Feb. 2012. https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html [Accessed:2-Feb-2022]. 
  22. 한국정보화진흥원, "영상 데이터 익명화 기술 및 평가방안", pp. 1-17, Feb. 2019. https://kbig.kr/board/fileMngr?cmd=down&boardId=files_bigdata_report&bltnNo=11551661790597&fileSeq=1&subId=sub06 [Accessed: 27-Feb-2022]. 
  23. 이경률, 임강빈, 이선영, "영상보안시스템에서의 형태보존암호를 활용한 효율적인 프라이버시 마스킹 기술 연구," 한국통신학회 학술대회논문집, pp. 813-814, Feb. 2018. 
  24. B. Meden, Z. Emersic, V. Struc, and P. Peer, "κ-Same-Net: Neural-Network-Based Face Deidentification," 2017 International Conference and Workshop on Bioinspired Intelligence (IWOBI), pp. 1-7, Jul. 2017. 
  25. Shahid, Arsalan, et al. "A Two-Stage De-Identification Process for Privacy-Preserving Medical Image Analysis." Healthcare. Vol. 10. No. 5. Multidisciplinary Digital Publishing Institute, 2022. 
  26. Popescu, Andreea Bianca, et al. "Obfuscation Algorithm for Privacy-Preserving Deep Learning-Based Medical Image Analysis." Applied Sciences 12.8 (2022): 3997. 
  27. Tu, N.A., Huynh-The, T., Wong, KS, et al., "Toward efficient and intelligent video analytics with visual privacy protection for large-scale surveillance," J Supercomput 77, pp. 14374-14404, May. 2021.  https://doi.org/10.1007/s11227-021-03865-7
  28. 김순석, 황호성, 윤상진, 권오승, 인한진, 김범식.(2018).개인정보보호를 위한 비식별 조치 현안 및 향후 과제에 관한 연구-보건의료분야를 중심으로. 예술인문사회 융합 멀티미디어 논문지,8(5),599-607. 
  29. 박민영, 최민경.(2016). 의료정보의 관리와 비식별화에 관한 법적 과제.유럽헌법연구,(21),495-534. 
  30. Personal Information Protection Commission Act No. 16930, "Personal Information Protection Act," Personal Information Protection Policy Division, Feb. 2020. 
  31. 김종율, 김혁중, "리테일 마케팅 고도화를 위한CCTV 영상 데이터 기반의 AI 융합 응용 서비스 활용 모델 연구," 디지털융복합연구, 19(5), pp. 197-205, 2021.  https://doi.org/10.14400/JDC.2021.19.5.197
  32. 박예승, 김도영, 최태림, 허수웅, 송혜원, 이상훈, "위험 상황 자동 인지 지능형 CCTV 시스템 연구," 한국통신학회 학술대회논문집, pp. 1174-1175, Feb. 2020.