Acknowledgement
This research is supported by the National Natural Science Foundation of China (12005073), the National Key R&D Program of China (2018YFE0180900, 2020YFB1901600) and the Project of Nuclear Power Technology Innovation Center of Science Technology and Industry for National Defense (HDLCXZX-2021-HD-033).
References
- R.D. Lawrence, Progress in nodal methods for the solution of the neutron diffusion and transport equations, Prog. Nucl. Energy 17 (1986) 271-301. https://doi.org/10.1016/0149-1970(86)90034-X
- K. Smith, An Analytic Nodal Method for Solving the 2-Group, Multi-dimensional, Static and Transient Neutron Diffusion Equations, Massachusetts Institute of Technology, 1979.
- R. Manish, S. Suneet, Nodal integral method for mutli-group neutron diffusion in three dimensional cylindrical coordinate system, Ann. Nucl. Energy 151 (2021) 107904. https://doi.org/10.1016/j.anucene.2020.107904
- D.A. Knoll, D.E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2) (2004) 357-397. https://doi.org/10.1016/j.jcp.2003.08.010
- X.F. zhou, F. Li, Jacobian-free Newon-Krylov nodal expansion methods with physics-based preconditioner and local elimination for three-dimensional and mutigroup k-eigenvalue problems, Nucl. Sci. Eng. 190 (3) (2018) 238-257. https://doi.org/10.1080/00295639.2018.1435136
- N. Humar, S. Singh, A novel physics-based preconditioner for nodal integral method using JFNK for 2D Burgers equation, Prog. Nucl. Energy 134 (2021) 103668. https://doi.org/10.1016/j.pnucene.2021.103668
- D.R. Gaston, C.J. Permann, J.W. Peterson, et al., Physics-based multiscale coupling for full core nuclear reactor simulation, Ann. Nucl. Energy 84 (2015) 45-54. https://doi.org/10.1016/j.anucene.2014.09.060
- J.A. Turner, K. Clarno, M. Sieger, et al., The virtual environment for reactor applications (VERA): design and architecture, J. Comput. Phys. 326 (2016) 544-568. https://doi.org/10.1016/j.jcp.2016.09.003
- E.D. Walker, B. Collins, J.C. Gehin, Low-order multiphysics coupling techniques for nuclear reactor applications, Ann. Nucl. Energy 132 (2019) 327-338. https://doi.org/10.1016/j.anucene.2019.04.022
- X.F. Zhou, D.Y. Wang, Li Fu, Jacobian-free Newton Krylov nodal expansion method in three-dimensional cylindrical coordinates, Ann. Nucl. Energy 166 (2022) 108825. https://doi.org/10.1016/j.anucene.2021.108825
- K.S. Smith, Nodal method storage reduction by nonlinear iteration, Trans. Am. Nucl. Soc. 44 (1983) 265-266.
- T. Downar, D. Lee, Y. Xu, J. Staudenmier, PARCS v2.6 U.S. NRC Core Neutronics Simulator Theory Manual, School of Nuclear Engineering Purdue University, 2004.
- C. Hao, Y. Xu, T. Downar, Multi-level coarse mesh finite difference acceleration with local two-node nodal expansion method, Ann. Nucl. Energy 116 (2018) 105-113. https://doi.org/10.1016/j.anucene.2018.02.002
- T.F. Chan, H.A. Vorst, Approximate and Incomplete Factorizations 4, Parallel numerical algorithms, Springer, Dordrecht, 1997, pp. 167-202.
- D.A. Knoll, P.R. McHugh, Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow, SIAM J. Sci. Comput. 19 (1) (1998) 291-301. https://doi.org/10.1137/S1064827596304034
- S.C. Eisenstat, H.F. Walker, Choosing the forcing term in inexact Newton method, SIAM J. Sci. Comput. 17 (1) (1996) 16-32. https://doi.org/10.1137/0917003
- S.C. Eisenstat, H.F. Walker, Globally convergent inexact Newton methods, SIAM J. Sci. Comput. 4 (2) (1994) 393-422.
- T. Kozlowski, T. Downar, PWR MOX/UO2 Core Transient Benchmark Final Report, NEA/NSC/DOC, 2006, p. 20.
- M. Imron, Development and verification of open reactor simulator ADPRES, Ann. Nucl. Energy 133 (2019) 580-588. https://doi.org/10.1016/j.anucene.2019.06.049
- H. Finnemann, A. Galati, NEACRP 3-D LWR Core Transient Benchmark Final Specifications. NEACRP-L-335, OECD Nuclear Energy Agency, 1991.
- A. Cherezov, R. Sanchez, H.G. Joo, A reduced-basis element method for pin-by-pin reactor core calculations in diffusion and SP3 approximations, Ann. Nucl. Energy 116 (2018) 195-209. https://doi.org/10.1016/j.anucene.2018.02.013
- J.C. Lefebvre, J. Mondot, J.P. West, Benchmark calculations of power distribution within assemblies, NEACRP-L- 336 (1991).
- Benchmark on Deterministic Transport Calculations without Spatial Homogenization: MOX Fuel Assembly 3-D Extension Case, Organisation for Economic Co-operation and Development/Nuclear Energy Agency, 2005.
- S. Stimpson, B. Collins, T. Downar, A 2-D/1-D transverse leakage approximation based on azimuthal, fourier moments, Nucl. Sci. Eng. 185 (2017) 243-262. https://doi.org/10.1080/00295639.2016.1272360