DOI QR코드

DOI QR Code

Comparative optimization of Be/Zr(BH4)4 and Be/Be(BH4)2 as 252Cf source shielding assemblies: Effect on landmine detection by neutron backscattering technique

  • Elsheikh, Nassreldeen A.A. (Al-Baha University, College of Science & Arts, Al-Mikhwah, Department of Physics)
  • 투고 : 2021.10.05
  • 심사 : 2022.01.24
  • 발행 : 2022.07.25

초록

Monte Carlo simulations were used to model a portable Neutron backscattering (NBT) sensor suitable for detecting plastic anti-personnel mines (APMs) buried in dry and moist soils. The model consists of a 100 MBq 252Cf source encapsulated in a neutron reflector/shield assembly and centered between two 3He detectors. Multi-parameter optimization was performed to investigate the efficiency of Be/Zr(BH4)4 and Be/Be(BH4)2 assemblies in terms of increasing the signal-to-background (S/B) ratio and reducing the total dose equivalent rate. The MCNP results showed that 2 cm Be/3 cm Zr(BH4)4 and 2 cm Be/3 cm Be(BH4)2 are the optimal configurations. However, due to portability requirements and abundance of Be, the 252Cf-2 cm Be/3 cm Be(BH4)2 NBT model was selected to scan the center of APM buried 3 cm deep in dry and moist soils. The selected NBT model has positively identified the APM with a S/B ratio of 886 for dry soils of 1 wt% hydrogen content and with S/B ratios of 615, 398, 86, and 12 for the moist soils containing 4, 6, 10, and 14 wt% hydrogen, respectively. The total dose equivalent rate reached 0.0031 mSv/h, suggesting a work load of 8 h/day for 806 days within the permissible annual dose limit of 20 mSv.

키워드

과제정보

The author thanks the Dipartimento di Fisica degli Universita di Padova and INFN sezione di Padova, for hosting the experimental activities in collaboration with the ICTP-IAEA Sandwich Training Educational Program (STEP). Special thanks are due to Dr. Ibrahim ElAgib from King Saud University for valuable discussions on the properties of MCNP.

참고문헌

  1. H. Killers, The Global Land-Mine Crisis, Report Released by the US Department of State, Bureau of Political-Military Affairs, Office of Humanitarian De-mining Programs, Washington, DC, 1998.
  2. G. Vourvopoulos, P.C. Womble, Pulsed fast/thermal neutron analysis: a technique for explosives detection, Talanta 54 (2001) 459-468. https://doi.org/10.1016/S0039-9140(00)00544-0
  3. N. Elsheikh, G. Viesti, I. ElAgib, F. Habbani, On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method, Appl. Radiat. Isot. 70 (2012) 643-649. https://doi.org/10.1016/j.apradiso.2012.01.004
  4. S.F. Masoudi, M. Ghashami, D-T neutron generators as a feasibility tool for landmine detection based on neutron backscattering method, Ann. Nucl. Energy 65 (2014) 441-445. https://doi.org/10.1016/j.anucene.2013.11.030
  5. G. Vourvopoulos, R.A. Sullivan, Evaluation of PELAN as a landmine confirmation sensor, Proc. SPIE 6217 (2006) 1-6, 62171P.
  6. N.A.A. Elsheikh, Monte Carlo modelling of a neutron-induced gamma-ray sensor for landmine or explosive detection, J. Radiat. Res. Appl. Sci. 11 (2018) 403-407. https://doi.org/10.1016/j.jrras.2018.08.004
  7. S.A.I. Corporation, an Advanced ESTCP PELAN System for Surface and NearSurface UXO Discrimination, ESTCP Project Number MM-200503, 2009.
  8. A.A.E. Nassreldeen, Characterization of (252Cf-ZrH2) Monte Carlo model for detection of nitrogen and chlorine by thermal neutron-capture PGNAA, Radiat. Phys. Chem. 188 (2021) 109591. https://doi.org/10.1016/j.radphyschem.2021.109591
  9. E.M.A. Hussein, E.J. Waller, Landmine detection: the problem and the challenge, Appl. Radiat. Isot. 53 (2000) 557-563. https://doi.org/10.1016/S0969-8043(00)00218-9
  10. V.R. Bom, C.P. Datema, C.W.E. Van Ejik, The status of the delft university neutron backscatter landmine detector (DUNBLAD), Appl. Radiat. Isot. 61 (2004) 21-25. https://doi.org/10.1016/j.apradiso.2004.02.012
  11. F.D. Brooks, M. Drosg, The HYDAD-D anti-personnel landmine detector, Appl. Radiat. Isot. 63 (2005) 565-574. https://doi.org/10.1016/j.apradiso.2005.05.006
  12. C.P. Datema, V.R. Bom, C.W.E. Van Eijk, Landmine detection with the neutron backscattering method, IEEE Nucl. Sci. Conf. Rec. 1 (2001) 5111-5114.
  13. C.P. Datema, V.R. Bom, C.W.E. Van Eijk, Experimental results and Monte Carlo simulations of a landmine localization device using the neutron backscattering method, Nucl. Instrum. Methods 488 (2002) 441-450. https://doi.org/10.1016/S0168-9002(02)00402-3
  14. A.A.E. Nassreldeen, Multi-parameter optimization of a (3He-252Cf-3He) neutron backscattering sensor for landmine detection, J. Radiat. Res. Appl. Sci. 10 (2017) 122-127. https://doi.org/10.1016/j.jrras.2017.02.001
  15. B. Kiraly, L. Olah, J. Csikai, Neutron-based techniques for detection of explosives and drugs, Radiat. Phys. Chem. 61 (2001) 781-784. https://doi.org/10.1016/S0969-806X(01)00403-0
  16. J. Csikai, R. Doczi, B. Kiraly, Investigations on landmine detection by neutron-based techniques, Appl. Radiat. Isot. 61 (2004) 11-20. https://doi.org/10.1016/j.apradiso.2004.02.011
  17. F.D. Brooks, M. Drosg, A. Buffler, M.S. Allie, Detection of anti-personnel landmines by neutron scattering and attenuation, Appl. Radiat. Isot. 61 (2004) 27-34. https://doi.org/10.1016/j.apradiso.2004.02.013
  18. A.A.E. Nassreldeen, Gamma-ray and neutron shielding features for some fast neutron moderators of interest in 252Cf-based boron neutron capture therapy, Appl. Radiat. Isot. 156 (2020) 109012. https://doi.org/10.1016/j.apradiso.2019.109012
  19. F.D. Brooks, M. Drosg, The HYDAD-D antipersonnel landmine detector, Appl. Radiat. Isot. 63 (2005) 565-574. https://doi.org/10.1016/j.apradiso.2005.05.006
  20. Obhadas, D. Sudac, K. Nad, V. Valkovic, G. Nebbia, G. Viesti, The soil moisture and its relevance to landmine detection by neutron backscattering technique, Nucl. Instrum. Methods B 213 (2004) 445-451. https://doi.org/10.1016/S0168-583X(03)01587-8
  21. M. Asnal, T. Liamsuwan, T. Onjun, An evaluation on the design of beam shaping assembly based on the D-T reaction for BNCT, J. Phys. Conf. 611 (2015), 012031.
  22. I. Elagib, A.M. Artoli, F. Habbani, M. Badawi, Monte Carlo simulation of Pu-Be, Am-Be and Cf-252 neutrons backscattering from buried explosives in dry soil, in: International Conference on Computer Applications Technology (ICCAT), 2013, pp. 1-4.
  23. National nuclear data center, Brookhaven National laboratory. https://www.nndc.bnl.gov/, 2008.
  24. R. Khabaz, Assessment of gamma-rays generated by the spontaneous fission source 252Cf using a Monte Carlo method, Ann. Nucl. Energy 46 (2012) 76-80. https://doi.org/10.1016/j.anucene.2012.03.014
  25. A.A.E. Nassreldeen, Shielding capabilities of Mg (BH4)2, TiH2, C2H4-25%B and C2H4 as 252Cf neutron source shielding containers: Monte Carlo simulations, Afr. Rev. Phys. 15 (2020), 0013.
  26. T. Dhliwayo, Development of advanced shield systems for fast neutrons, Int. Nucl. Saf. J. 3 (2014) 49-53.
  27. F.A. Smith, A Primer in Applied Radiation Physics, Singapore: World Scientific Publishing Co.Pte.Ltd, Po Box 128, Farrer Road, Singapore, 2000, p. 912805.
  28. V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy 64 (2014) 301-310. https://doi.org/10.1016/j.anucene.2013.10.003
  29. M.I. Sayyed, O. Agar, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag based alloys, Nucl. Eng. Technol. 51 (2019) 853-859. https://doi.org/10.1016/j.net.2018.12.014
  30. T. Hayashi, K. Tobita, Y. Nakamori, S. Orimo, Advanced neutron shielding material using zirconium borohydride and zirconium hydride, J. Nucl. Mater. (2009) 386-388.
  31. X-5 Monte Carlo Team, MCNP- a General Monte Carlo N-Particle Transport Code: Overview and Theory, vol. 5, Los Alamos National Laboratory, 2003. Revised 6/30/04).
  32. V. Bom, M.A. Ali, C.W.E. van Eijk, Land mine detection with neutron back scattering imaging using a neutron generator, EEE Trans. Nucl. Sci. 53 (2006) 356-360. https://doi.org/10.1109/TNS.2006.869841
  33. B.C. Anderson, K.E. Holbert, H. Bowler, Design, Construction, and Modeling of a 252Cf Neutron Irradiator, Science and Technology of Nuclear Installations, 2016, p. 9012747.
  34. J. Scherzinger, J.R.M. Annand, G. Davatz, K.G. Fissum, U. Gendottid, R. HallWilton, A. Rosborg, E. H akansson, R. Jebali, K. Kanakib, M. Lundin, B. Nilsson, H. Svensson, Tagging fast neutrons from an 241Am/9Be source, Appl. Radiat. Isot. 98 (2015) 74-79. https://doi.org/10.1016/j.apradiso.2015.01.003
  35. J.G. Fantidis, Comparison of different geometric configurations and materials for neutron radiography purposes based on a 241Am/Be neutron source, J. Taibah Univ. Sci. 6 (2017) 1214-1220. https://doi.org/10.1016/j.jtusci.2016.10.002
  36. Z.D. Whetstone, K.J. Kearfott, A review of conventional explosives detection using active neutron interrogation, J. Radioanal. Nucl. Chem. 301 (2014) 629-639. https://doi.org/10.1007/s10967-014-3260-5
  37. T.P. Lou, Compact D-D/d-T Neutron Generators and Their Applications, A Dissertation Submitted in Partial Satisfaction of the Requirements for the Degree of Doctor of Philosophy, University Of California, Berkeley, 2003.
  38. T.W. Crane, M.P. Baker, Neutron detectors. Chap. 13, passive nondestructive assay of nuclear materials, in: D. Reilly, et al. (Eds.), Technical Report NUREG/CR-5550; LA-UR-90-732, Los Alamos National Laboratory, NM, USA, 1991.
  39. D.R. Ochbelagh, Comparison of 3He and BF3neutron detectors used to detect hydrogenous material buried in soil, Radiat. Phys. Chem. 81 (2012) 379-382. https://doi.org/10.1016/j.radphyschem.2011.12.031
  40. K. Zeitelhack, Search for alternative techniques to helium-3 based detectors for neutron scattering applications, Sci. Rev. 23 (2012) 10-13.
  41. K.A. Guzman-Garcia, H.R. Vega-Carrillo, E. Gallego, J.A. Gonzalez-Gonzalez, A. Lorente, S. Ibanez-Fernandez, 10B+ZnS(Ag) as an alternative to 3He-based detectors for radiation portal monitors, EPJ Web Conf. 253 (2017), 07008.
  42. R.V. Griffith, J. Palfalvi, U. Madhvanath, Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes, IAEA Technical Report Ser. No.318, IAEA, Vienna, 1990.
  43. T.E. Valentine, MCNP-DSP Users Manual, Oak Ridge National Laboratory, 2001. ORNL/TM-13334/2.
  44. J.C.G. Walker, Evolution of the Atmosphere, 1977.
  45. G.F. Knoll, Radiation Detection and Measurement, second ed., Wiley, New York, 1989.
  46. G. Mauri, F. Messi, K. Kanaki, R. Hall-Wilton, F. Piscitelli, Fast neutron sensitivity for 3He detectors and comparison with Boron-10 based neutron detectors, EPJ Tech. Instrum. 6 (2019) 3. https://doi.org/10.1140/epjti/s40485-019-0052-x
  47. F. Piscitelli, G. Mauri, A. Laloni, R. Hall-Wilton, Verification of He-3 proportional counters' fast neutron sensitivity through a comparison with He-4 detectors He-3 and He-4 proportional counters' fast neutron sensitivity and evaluation of the cosmic neutron fluxes at ESS, Eur. Phys. J. Plus 135 (2020) 577. https://doi.org/10.1140/epjp/s13360-020-00600-8
  48. ISO 230-7, Test Code for Machine Tools-Part7: Geometric Accuracy of Axes of Rotation, 2015.
  49. S. Ghosh, A. Sharma, G. Talukder, Zirconium: an abnormal trace element in biology, Biol. Trace Elem. Res. 35 (1992) 247-271. https://doi.org/10.1007/BF02783770
  50. M. Tanveer, L. Wang, Potential targets to reduce beryllium toxicity in plants: a review, Plant Physiol. Biochem. 139 (2019) 691-696. https://doi.org/10.1016/j.plaphy.2019.04.022
  51. Shanghai metals market (SMM), November. https://www.metal.com/, 2021.
  52. K.J.R. Rosman, P.D.P. Taylor, IUPAC subcommittee for isotopic abundance measurements, Pure Appl. Chem. 71 (1999) 1593-1607. https://doi.org/10.1351/pac199971081593
  53. M.J. Fayer, G.W. Gee, Neutron Scattering, Encyclopedia of Soils in the Environment, 2005, pp. 6-12.
  54. E.L. Greacen, G. Schrale, The effect of bulk density on neutron meter calibration, Aust. J. Soil Res. 14 (1976) 159-169. https://doi.org/10.1071/SR9760159
  55. P.G. Marais, W.B.D.E.V. Smit, Effect of bulk density and of hydrogen in forms other than free water on the calibration curve of the neutron moisture meter, South Afr. J. Agric. Sci. 5 (1962) 225-238.
  56. E. Dian, K. Kanaki, R.J. Hall-Wilton, P. Zagyvai, Sz Czifrus, Neutron activation and prompt gamma intensity in Ar/CO2-flled neutron detectors at the European Spallation Source, Appl. Radiat. Isot. 128 (2017) 275-786. https://doi.org/10.1016/j.apradiso.2017.06.003
  57. M.M. Bournea, C. Mussi, E.C. Miller, S.D. Clarke, S.A. Pozzi, A. Gueorguiev, Characterization of the CLYC detector for neutron and photon detection, Nucl. Instrum. Methods Phys. Res. 736 (2014) 124-127. https://doi.org/10.1016/j.nima.2013.10.030