DOI QR코드

DOI QR Code

Beam-target configurations and robustness performance of the tungsten granular flow spallation target for an Accelerator-Driven Sub-critical system

  • 투고 : 2021.08.22
  • 심사 : 2022.01.21
  • 발행 : 2022.07.25

초록

The dense granular flow spallation target is a new target concept proposed for an Accelerator-Driven Sub-critical (ADS) system. In this paper, the beam-target configurations of a tungsten granular flow target for the ADS with a thermal power of 1 GW is explored. The beam profile options using different scanning methods are discussed. The critical geometry parameters are adjusted to investigate the performance of the granular target from the aspects of neutron efficiency, stability and temperature distribution in target medium. To figure out how the target under accident conditions would behave, different clogging conditions are induced in the simulation. The dynamic processes are analyzed and some important parameters such as abnormal temperature rise and beam cutoff time window are obtained. The response of the sub-critical reactor to a clogging accident is also investigated. It is indicated that the monitoring of the granular flow by the neutron detectors in the sub-critical core will be effective.

키워드

과제정보

This work is supported by the National Natural Science Foundation of China (Grant No. 11805253, 11905272, 11775282), the CAS Strategic Priority Research Program-Future Advanced Nuclear Fission Energy (XDA03000000) and the Large Research Infrastructures of 12th Five-Year Plan: China initiative Accelerator Driven System.

참고문헌

  1. C.D. Bowman, E.D. Arthur, P.W. Lisowski, et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instrum. Methods Phys. Res. 320 (12) (1992) 336, https://doi.org/10.1016/0168-9002(92)90795-6.
  2. Y. He, T. Tan, A. Wu, et al., Operation experience at CAFe, report on 2021 international conference on RF superconductivity (SRF2021), in: Virtual Conference June 28-July 2, 2021. https://indico.frib.msu.edu/event/38/page/356-conference-program.
  3. A. Ghiglino, M. Magan, A. Zarraoa-Garmendia, et al., Tests on the SNS rotating target design at the RTFT (ESS BILBAO)[J], Phys. Procedia 60 (2014) 151-156. https://doi.org/10.1016/j.phpro.2014.11.022
  4. K. Jones, Technological challenges in the path to 3.0 MW at the SNS accelerator, in: North American Particle Accelerator Conf.(NAPAC'16), Chicago, IL, USA, October 9-14, 2016, JACOW, Geneva, Switzerland, 2017, pp. 246-250.
  5. T. Mora, F. Sordo, A. Aguilar, et al., An evaluation of activation and radiation damage effects for the European Spallation Source Target[J], J. Nucl. Sci. Technol. 55 (5) (2018) 548-558. https://doi.org/10.1080/00223131.2017.1417173
  6. G.S. Bauer, Overview on spallation target design concepts and related materials issues, J. Nucl. Mater. 398 (1-3) (2010) 19-27. https://doi.org/10.1016/j.jnucmat.2009.10.005
  7. G.S. Bauer, M. Salvatores, G. Heusener, MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target, J. Nucl. Mater. 296 (1) (2001) 17-33. https://doi.org/10.1016/S0022-3115(01)00561-X
  8. G.S. Bauer, Y. Dai, W. Wagner, SINQ layout, operation and R&D to high power, J. Phys. IV - Proc. EDP Sci. 12 (8) (2002) 3-26.
  9. C. Fazio, F. Groschel, W. Wagner, et al., The MEGAPIE-TEST project: supporting research and lessons learned in first-of-a-kind spallation target technology, Nucl. Eng. Des. 238 (6) (2008) 1471-1495. https://doi.org/10.1016/j.nucengdes.2007.11.006
  10. W. Wagner, F. Groschel, K. Thomsen, et al., MEGAPIE at SINQ-The first liquid metal target driven by a megawatt class proton beam, J. Nucl. Mater. 377 (1) (2008) 12-16. https://doi.org/10.1016/j.jnucmat.2008.02.057
  11. T. McManamy, A. Crabtree, D. Lousteau, et al., Overview of the SNS target system testing and initial beam operation experience, J. Nucl. Mater. 377 (1) (2008) 1-11. https://doi.org/10.1016/j.jnucmat.2008.02.024
  12. S. Henderson, Spallation Neutron Source progress, challenges and upgrade options, in: Proceedings of EPAC08, Genoa, Italy, 2008.
  13. B. Riemer, J. Janney, S. Kaminskas, et al., Target operational experience at the spallation neutron source, Aug 5-8, in: Proceedings of the 11th International Topical Meeting on Nuclear Applications of Accelerators (AccApp 2013), Bruges, Belgium, 2013.
  14. M. Futakawa, K. Haga, T. Wakui, et al., Development of the Hg target in the JPARC neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 600 (1) (2009) 18-21. https://doi.org/10.1016/j.nima.2008.11.103
  15. T. Kai, Y. Kasugai, M. Ooi, et al., Experiences on Radioactivity Handling for Mercury Target System in MLF/J-PARC, 2014.
  16. S. Meigo, M. Ooi, M. Harada, et al., Radiation damage and lifetime estimation of the proton beam window at the Japan Spallation Neutron Source, J. Nucl. Mater. 450 (1) (2014) 141-146. https://doi.org/10.1016/j.jnucmat.2014.02.011
  17. J. Mach, K. Johns, S. Gorti, et al., Fatigue analysis of the spallation neutron source 2 MW target design[J], in: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, p. 165481.
  18. K. Haga, H. Kogawa, T. Wakui, et al., Technical investigation on small water leakage incident occurrence in mercury target of J-PARC, J. Nucl. Sci. Technol. 55 (2) (2018) 160-168. https://doi.org/10.1080/00223131.2017.1384706
  19. T. Wakui, E. Wakai, H. Kogawa, et al., New design of high power mercury target vessel of J-PARC, Mater. Sci. Forum 1024 (2021) 145-150. https://doi.org/10.4028/www.scientific.net/msf.1024.145.
  20. Y. Gohar, P.J. Finck, L. Krajtl, et al., Lead-bismuth Target Design for the Subcritical Multiplier (SCM) of the Accelerator Driven Test Facility (ADTF)[R], Argonne National Lab., IL (US), 2002.
  21. C.H. Cho, T.Y. Song, N.I. Tak, Numerical design of a 20 MW leadebismuth spallation target for an accelerator-driven system, Nucl. Eng. Des. 229 (2) (2004) 317-327. https://doi.org/10.1016/j.nucengdes.2004.01.002
  22. Mol, Belgium P. Schuurmans, et al., Design and supporting R&D for the XTADS spallation target, 6-9 May, in: Proc. Of the Fifth Workshop on Utilisation and Reliability of High Power Proton Accelerators (HPPA5), 2007.
  23. H.A. Abderrahim, P. Baeten, D. De Bruyn, et al., MYRRHA, a multipurpose hybrid research reactor for high-end applications, Nucl. Phys. News 20 (1) (2010) 24-28. https://doi.org/10.1080/10506890903178913
  24. J. Engelen, H.A. Abderrahim, P. Baeten, et al., MYRRHA: preliminary front-end engineering design[J], Int. J. Hydrogen Energy 40 (44) (2015) 15137-15147. https://doi.org/10.1016/j.ijhydene.2015.03.096
  25. L. Yang, W.-L. Zhan, New concept for ads spallation target: gravity-driven dense granular flow target, Sci. China Technol. Sci. 58 (2015) 1705, https://doi.org/10.1007/s11431-015-5894-0.
  26. L. Ma, X. Zhang, S. Zhang, et al., Validation of the idea of granular flow target: a beam coupling test[J], Nucl. Eng. Des. 330 (2018) 289-296. https://doi.org/10.1016/j.nucengdes.2017.12.023
  27. J. Li, L. Gu, C. Yao, et al., Neutronic Study on a New Concept of Accelerator Driven Subcritical System in China[C]//International Conference on Nuclear Engineering, vol. 51470, American Society of Mechanical Engineers, 2018, V005T05A007.
  28. O. Caretta, C.J. Densham, T.W. Davies, et al., Preliminary experiments on a fluidised powder target, Proceedings of EPAC08, 2008, Genoa, Italy (2008) 2862-2864.
  29. C. Densham, O. Caretta, P. Loveridge, et al., The potential of fluidised powder target technology in high power accelerator facilities, in: Proceedings of PAC09, 2009. Vancouver, BC, Canada.
  30. O. Caretta, T. Davenne, C. Densham, M. Fitton, P. Loveridge, J. O'Dell, N. Charitonidis, I. Efthymiopoulos, A. Fabich, L. Rivkin, Response of a tungsten powder target to an incident high energy proton beam, Phys. Rev. Accel. Beams 17 (2014) 101005, https://doi.org/10.1103/PhysRevSTAB.17.101005.
  31. T.W. Davies, O. Caretta, C.J. Densham, R. Woods, The production and anatomy of a tungsten powder jet, Powder Technol. 201 (3) (2016) 296-300. https://doi.org/10.1016/j.powtec.2010.03.018
  32. H.-J. Cai, G. Yang, N. Vassilopoulos, S. Zhang, F. Fu, Y. Yuan, L. Yang, New target solution for a muon collider or a muon-decay neutrino beam facility: the granular waterfall target, Phys. Rev. Accel. Beams 20 (2) (2017), 023401. https://doi.org/10.1103/PhysRevAccelBeams.20.023401
  33. L. Hu, Y. Zhang, G.H. Su, et al., Numerical study on cooling characteristics in granular and liquid spallation targets[J], Nucl. Eng. Des. 322 (2017) 474-484. https://doi.org/10.1016/j.nucengdes.2017.07.027
  34. T. Davenne, P. Loveridge, R. Bingham, J. Wark, J.J. Back, O. Caretta, C. Densham, J. O'Dell, D. Wilcox, M. Fitton, Observed proton beam induced disruption of a tungsten powder sample at CERN, Phys. Rev. Accel. Beams 21 (2018), 073002, https://doi.org/10.1103/PhysRevAccelBeams.21.073002.
  35. R. Chen, K. Guo, Y. Zhang, et al., Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target[J], Nucl. Eng. Des. 330 (2018) 59-71. https://doi.org/10.1016/j.nucengdes.2018.01.019
  36. O. Caretta, et al., Proton beam induced dynamics of tungsten granules, Phys. Rev. Accel. Beams 21 (3) (2018), 033401, https://doi.org/10.1103/PhysRevAccelBeams.21.033401.
  37. J. Li, Y. Zhang, X. Zhang, et al., Neutronics analysis of uranium compounds spallation target using Monte Carlo simulation, Nucl. Eng. Des. 324 (2017) 202, https://doi.org/10.1016/j.nucengdes.2017.08.033.
  38. F. Akhtar, An investigation on the solid state sintering of mechanically alloyed nano-structured 90W-Ni-Fe tungsten heavy alloy, Int. J. Refract. Met. Hard 26 (2008) 145-151, https://doi.org/10.1016/j.ijrmhm.2007.05.011.
  39. S.H. Hong, H.J. Ryu, Combination of mechanical alloying and two-stage sintering of a 93W-5.6Ni-1.4Fe tungsten heavy alloy, Mater. Sci. Eng., A 344 (1) (2003) 253-260, https://doi.org/10.1016/S0921-5093(02)00410-0.
  40. L. Pang, P. Tai, T. Shen, et al., Study on collective friction and wear behavior of W-Ni-Fe alloy balls[J], Tribol. Int. 164 (2021) 107232. https://doi.org/10.1016/j.triboint.2021.107232
  41. X. Zhang, L. Yu, X. Yan, et al., The optimization on neutronic performance of the granular spallation target by using low-density porous tungsten[J], Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 916 (2019) 22-31. https://doi.org/10.1016/j.nima.2018.08.071
  42. Y. Zhang, J. Li, X. Zhang, et al., Neutronics performance and activation calculation of dense tungsten granular target for China-ADS, Nucl. Instrum. Methods Phys. Res. B 410 (2017) 88, https://doi.org/10.1016/j.nimb.2017.08.003.
  43. L. Gu, L. Chen, Q. Zhou, et al., Measurement of tungsten granular target worth on VENUS-II light water reactor and validation of the granular target model[J], Ann. Nucl. Energy 150 (2021) 107825. https://doi.org/10.1016/j.anucene.2020.107825
  44. W. Cui, Z. He, Q. Zhao, et al., Temperature control for spallation target in accelerator driven system[J], Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 448 (2019) 5-10. https://doi.org/10.1016/j.nimb.2019.03.059
  45. K. Yin, Z. He, W. Ma, et al., A non-intercepting monitoring method for beam position on the target in an accelerator driven system[J], Ann. Nucl. Energy 153 (2021) 108075. https://doi.org/10.1016/j.anucene.2020.108075
  46. I.B.a. Slessarev, A.F. Briesmeister, IAEA ADS-BENCHMARK (Stage 1) Results and Analysis, TCM-Meeting, Madrid, 1997.
  47. K. Tsujimoto, T. Sasa, K. Nishihara, et al., Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide, J. Nucl. Sci. Technol. 41 (1) (2004) 21-36. https://doi.org/10.3327/jnst.41.21
  48. Y. Tian, S. Zhang, P. Lin, Q. Yang, G. Yang, L. Yang, Implementing discrete element method for large-scale simulation of particles on multiple GPUs, Comput. Chem. Eng. 104 (2017) 231-240. https://doi.org/10.1016/j.compchemeng.2017.04.019
  49. P. Lin, S. Zhang, X. Zhang, Y. Tian, L. Yang, Simulation of Heat Transfer in Granular Systems with DEM on GPUs, Springer, Singapore, 2017.
  50. Y. Tian, P. Lin, H. Cai, et al., A fast and accurate GPU based method on simulating energy deposition for beam-target coupling with granular materials, Comput. Phys. Commun. (2021) 108104.
  51. H.-J. Cai, F. Fu, J.-Y. Li, Code development and target station design for Chinese accelerator-driven system project, 183 (1), https://doi.org/10.13182/NSE15-59, 2016, 107.
  52. H.J. Cai, Z.L. Zhang, F. Fu, et al., Toward high-efficiency and detailed Monte Carlo simulation study of the granular flow spallation target, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 882 (2018) 117-123. https://doi.org/10.1016/j.nima.2017.10.078
  53. T. Sasa, K. Tsujimoto, T. Takizuka, H. Takano, Code development for the design study of the OMEGA Program accelerator-driven transmutation systems, Nucl. Instrum. Methods Phys. Res. 463 (3) (2001) 495-504. https://doi.org/10.1016/S0168-9002(01)00166-8
  54. J.F. Briesmeister, MCNP-A General Monte Carlo N-Particle Transport Code, 2000. Version 4C, Report LA-13709-M.
  55. Y.K. Batygin, V.V. Kushin, S.V. Plotnikov, Uniform target irradiation by circular beam sweeping, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 363 (1-2) (1995) 128-130. https://doi.org/10.1016/0168-9002(95)00258-8
  56. M. Fukuda, S. Okumura, K. Arakawa, Simulation of spiral beam scanning for uniform irradiation on a large target, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 396 (1-2) (1997) 45-49. https://doi.org/10.1016/S0168-9002(97)00740-7
  57. H. Saugnac, et al., High energy beam line design of the 600 MeV 4mA proton linac for the Myrrha facility, in: Proc. 2nd IPAC Conf., 2011. San Sebastian, Spain.
  58. Yuri K. Batygin, Eric J. Pitcher, Advancement of LANSCE accelerator facility as a 1-MW fusion prototypic neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 960 (2020) 163569. https://doi.org/10.1016/j.nima.2020.163569