DOI QR코드

DOI QR Code

Physics-based modelling and validation of inter-granular helium behaviour in SCIANTIX

  • Giorgi, R. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Cechet, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Cognini, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Magni, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Zullo, G. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Schubert, A. (European Commission, Joint Research Centre (JRC)) ;
  • Van Uffelen, P. (European Commission, Joint Research Centre (JRC)) ;
  • Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
  • Received : 2021.07.08
  • Accepted : 2022.01.05
  • Published : 2022.07.25

Abstract

In this work, we propose a new mechanistic model for the treatment of helium behaviour at the grain boundaries in oxide nuclear fuel. The model provides a rate-theory description of helium inter-granular behaviour, considering diffusion towards grain edges, trapping in lenticular bubbles, and thermal resolution. It is paired with a rate-theory description of helium intra-granular behaviour that includes diffusion towards grain boundaries, trapping in spherical bubbles, and thermal re-solution. The proposed model has been implemented in the meso-scale software designed for coupling with fuel performance codes SCIANTIX. It is validated against thermal desorption experiments performed on doped UO2 samples annealed at different temperatures. The overall agreement of the new model with the experimental data is improved, both in terms of integral helium release and of the helium release rate. By considering the contribution of helium at the grain boundaries in the new model, it is possible to represent the kinetics of helium release rate at high temperature. Given the uncertainties involved in the initial conditions for the inter-granular part of the model and the uncertainties associated to some model parameters for which limited lower-length scale information is available, such as the helium diffusivity at the grain boundaries, the results are complemented by a dedicated uncertainty analysis. This assessment demonstrates that the initial conditions, chosen in a reasonable range, have limited impact on the results, and confirms that it is possible to achieve satisfying results using sound values for the uncertain physical parameters.

Keywords

Acknowledgement

This work has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945077 (PATRICIA Project).

References

  1. T. Wiss, et al., Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond, J. Nucl. Mater. 451 (1-3) (2014) 198-206. https://doi.org/10.1016/j.jnucmat.2014.03.055
  2. P. Konarski, C. Cozzo, G. Khvostov, H. Ferroukhi, Spent nuclear fuel in dry storage conditions e current trends in fuel performance modeling, J. Nucl. Mater. 555 (2021) 153138. https://doi.org/10.1016/j.jnucmat.2021.153138
  3. M.G. El-Samrah, A.F. Tawfic, S.E. Chidiac, Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: a review, Ann. Nucl. Energy 160 (2021) 108408. https://doi.org/10.1016/j.anucene.2021.108408
  4. J.S. Kim, J.D. Hong, Y.S. Yang, D.H. Kook, Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage, J. Nucl. Mater. 492 (2017) 253-259. https://doi.org/10.1016/j.jnucmat.2017.05.047
  5. G. Spykman, Dry storage of spent nuclear fuel and high active waste in Germany - current situation and technical aspects on inventories integrity for a prolonged storage time, Nucl. Eng. Technol. 50 (2) (2018) 313-317. https://doi.org/10.1016/j.net.2018.01.009
  6. H.J. Cha, K.N. Jang, K.T. Kim, An allowable cladding peak temperature for spent nuclear fuels in interim dry storage, J. Nucl. Mater. 498 (2018) 409-420. https://doi.org/10.1016/j.jnucmat.2017.11.018
  7. S. Alyokhina, Thermal analysis of certain accident conditions of dry spent nuclear fuel storage, Nucl. Eng. Technol. 50 (5) (2018) 717-723. https://doi.org/10.1016/j.net.2018.03.002
  8. P.A.C. Raynaud, R.E. Einziger, Cladding stress during extended storage of high burnup spent nuclear fuel, J. Nucl. Mater. 464 (2015) 304-312. https://doi.org/10.1016/j.jnucmat.2015.05.008
  9. A. Arkoma, R. Huhtanen, J. Lepp anen, J. Peltola, T. Pattikangas, Calculation chain for the analysis of spent nuclear fuel in long-term interim dry storage, Ann. Nucl. Energy 119 (2018) 129-138. https://doi.org/10.1016/j.anucene.2018.04.037
  10. P. Van Uffelen, C. Gyori, A. Schubert, J. van de Laar, Z. Hozer, G. Spykman, Extending the application range of a fuel performance code from normal operating to design basis accident conditions, J. Nucl. Mater. 383 (1-2) (2008) 137-143. https://doi.org/10.1016/j.jnucmat.2008.08.043
  11. F. Feria, L.E. Herranz, J. Penalva, On the way to enabling FRAPCON-3 to model spent fuel under dry storage conditions: the thermal evolution, Ann. Nucl. Energy 85 (2015) 995-1002. https://doi.org/10.1016/j.anucene.2015.07.017
  12. L.E. Herranz, J. Penalva, F. Feria, CFD analysis of a cask for spent fuel dry storage: the thermal evolution, Ann. Nucl. Energy 76 (2015) 54-62. https://doi.org/10.1016/j.anucene.2014.09.032
  13. D. Pizzocri, et al., A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330. https://doi.org/10.1016/j.jnucmat.2018.02.024
  14. G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86. https://doi.org/10.1016/j.nucengdes.2012.12.002
  15. T. Barani, et al., Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017) 96-110. https://doi.org/10.1016/j.jnucmat.2016.10.051
  16. G. Pastore, et al., Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 456 (2015) 398-408. https://doi.org/10.1016/j.jnucmat.2014.09.077
  17. T. Wiss, et al., Properties of the high burnup structure in nuclear light water reactor fuel, Radiochim. Acta 105 (11) (2017) 893-906. https://doi.org/10.1515/ract-2017-2831
  18. D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, V.V. Rondinella, P. Van Uffelen, A semi-empirical model for the formation and depletion of the high burnup structure in UO2, J. Nucl. Mater. 487 (2017) 23-29. https://doi.org/10.1016/j.jnucmat.2017.01.053
  19. K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. 188 (C) (1992) 295-302. https://doi.org/10.1016/0022-3115(92)90487-6
  20. B. Baurens, J. Sercombe, C. Riglet-Martial, L. Desgranges, L. Trotignon, P. Maugis, 3D thermo-chemical-mechanical simulation of power ramps with ALCYONE fuel code, J. Nucl. Mater. 452 (1-3) (2014) 578-594. https://doi.org/10.1016/j.jnucmat.2014.06.021
  21. J.D. Hales, R.L. Williamson, S.R. Novascone, G. Pastore, B.W. Spencer, D.S. Stafford, K.A. Gamble, D.M. Perez, W. Liu, BISON Theory Manual - the Equations behind Nuclear Fuel Analysis, Idaho Falls, 2016.
  22. L. Cognini, A. Cechet, T. Barani, D. Pizzocri, P. Van Uffelen, L. Luzzi, Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes, Nucl. Eng. Technol. 53 (2021) 562-571. https://doi.org/10.1016/j.net.2020.07.009
  23. H.J. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (3-4) (1980) 219-242. https://doi.org/10.1080/00337578008207118
  24. M.S. Veshchunov, On the theory of fission gas bubble evolution in irradiated UO2 fuel, J. Nucl. Mater. 277 (2000) 67-81. https://doi.org/10.1016/S0022-3115(99)00136-1
  25. D.R. Olander, D. Wongsawaeng, Re-solution of fission gas e a review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (1-3) (2006) 94-109. https://doi.org/10.1016/j.jnucmat.2006.03.010
  26. M. Tonks, et al., Unit mechanisms of fission gas release: current understanding and future needs, J. Nucl. Mater. 504 (2018) 300-317. https://doi.org/10.1016/j.jnucmat.2018.03.016
  27. J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, C.T. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345. https://doi.org/10.1016/j.jnucmat.2018.08.019
  28. R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (1) (2004) 61-77. https://doi.org/10.1016/j.jnucmat.2003.10.008
  29. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020) 152042. https://doi.org/10.1016/j.jnucmat.2020.152042
  30. P. Garcia, et al., A study of helium mobility in polycrystalline uranium dioxide, J. Nucl. Mater. 430 (1-3) (2012) 156-165. https://doi.org/10.1016/j.jnucmat.2012.06.001
  31. P. Van Uffelen, Contribution to the Modelling of Fission Gas Release in Light Water Reactor Fuel, 2002. PhD Thesis.
  32. D.R. Olander, P. Van Uffelen, On the role of grain boundary diffusion in fission gas release, J. Nucl. Mater. 288 (2-3) (2001) 137-147. https://doi.org/10.1016/S0022-3115(00)00725-X
  33. P. Van Uffelen, Modelling the variable precipitation of fission products at grain boundaries, J. Nucl. Mater. 280 (3) (2000) 275-284. https://doi.org/10.1016/S0022-3115(00)00061-1
  34. A.M. Booth, A Method of Calculating Fission Gas Diffusion from UO2 Fuel and its Application to the X-2-F Loop Test, 1957.
  35. L. Cognini, et al., Helium solubility in oxide nuclear fuel: derivation of new correlations for Henry's constant, Nucl. Eng. Des. 340 (2018) 240-244. https://doi.org/10.1016/j.nucengdes.2018.09.024
  36. Z. Talip, et al., Thermal diffusion of helium in 238Pu-doped UO2, J. Nucl. Mater. 445 (1-3) (2014) 117-127. https://doi.org/10.1016/j.jnucmat.2013.10.066
  37. L. Luzzi, et al., Helium diffusivity in oxide nuclear fuel: critical data analysis and new correlations, Nucl. Eng. Des. 330 (2018).
  38. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, 1976.
  39. K. Nakajima, H. Serizawa, N. Shirasu, Y. Haga, Y. Arai, The solubility and diffusion coefficient of helium in uranium dioxide, J. Nucl. Mater. 419 (1-3) (2011) 272-280. https://doi.org/10.1016/j.jnucmat.2011.08.045
  40. F. Rufeh, D.R. Olander, T.H. Pigford, The solubility of helium in uranium dioxide, Nucl. Sci. Eng. 23 (4) (1965) 335-338. https://doi.org/10.13182/NSE65-A21069
  41. E. Maugeri, et al., Helium solubility and behaviour in uranium dioxide, J. Nucl. Mater. 385 (2) (2009) 461-466. https://doi.org/10.1016/j.jnucmat.2008.12.033
  42. L. Van Brutzel, A. Chartier, A new equation of state for helium nanobubbles embedded in UO2 matrix calculated via molecular dynamics simulations, J. Nucl. Mater. 518 (2019) 431-439. https://doi.org/10.1016/j.jnucmat.2019.02.015
  43. R.M. Davies, S.G. Taylor, The mechanics of large bubbles rising through extended liquids and through liquids in tubes, Dyn. Curved Front. 200 (1062) (1988) 377-392.
  44. J.Y. Colle, et al., A mass spectrometry method for quantitative and kinetic analysis of gas release from nuclear materials and its application to helium desorption from UO2 and fission gas release from irradiated fuel, J. Nucl. Sci. Technol. 51 (5) (2014) 700-711. https://doi.org/10.1080/00223131.2014.889583
  45. G. Martin, et al., Helium release in uranium dioxide in relation to grain boundaries and free surfaces, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (11-12) (2010) 2133-2137. https://doi.org/10.1016/j.nimb.2010.02.064
  46. G. Martin, et al., A quantitative mNRA study of helium intergranular and volume diffusion in sintered UO2, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 249 (1-2 SPEC. ISS.) (2006) 509-512. https://doi.org/10.1016/j.nimb.2006.03.042