DOI QR코드

DOI QR Code

Enhancement and optimization of gamma radiation shielding by doped nano HgO into nanoscale bentonite

  • Allam, Elhassan A. (Alexandria University, Faculty of Science, Chemistry Department) ;
  • El-Sharkawy, Rehab M. (Chemistry Department, Faculty of Dentistry, Pharos University in Alexandria) ;
  • El-Taher, Atef (Physics Department, Faculty of Science, Al-Azhar University) ;
  • Shaaban, E.R. (Physics Department, Faculty of Science, Al-Azhar University) ;
  • RedaElsaman, RedaElsaman (Physics Department, Faculty of Science, Al-Azhar University) ;
  • Massoud, E. El Sayed (Biology Department, Faculty of Sciences and Arts, King Khalid University) ;
  • Mahmoud, Mohamed E. (Alexandria University, Faculty of Science, Chemistry Department)
  • Received : 2021.06.20
  • Accepted : 2021.12.20
  • Published : 2022.06.25

Abstract

In this study, nano-scaled shielding materials were assembled and fabricated by doping different weight percentages of Nano-mercuric oxide (N-HgO) into Nano-Bentonite (N-Bent) based on using (100-x% N-Bent + x% N-HgO, x = 10, 20, 30, and 40 wt %). The fabricated N-HgO/N-Bent nanocomposites were characterized by FT-IR, XRD, and SEM and evaluated to evaluate their shielding properties toward gamma radiation by using four different γ-ray energies form three point sources; 356 keV from 133Ba, 662 keV from 137Cs as well as 1173, and 1332 keV from 60Co. The γ-rays mass attenuation coefficients were plotted as a function of the doped N-HgO concentrations into N-HgO/N-Bent nanocomposites. The computed values of mass attenuation coefficients (µm), effective atomic number (Zeff) and electron density (Nel) by the as-prepared samples were found to increase, while the half value layer (HVL) and mean free path (MFP) were identified to decrease upon increasing the N-HgO contents. It was concluded also that the increase in N-HgO concentration led to a direct increase in the mass attenuation coefficient from 0.10 to 0.17 cm2/g at 356 keV and from 0.08 to 0.09 cm2/g at 662 keV. However, a slight increase was observed in the identified mass attenuation coefficients at (1172 and 1332 keV).

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Project under grant number (R.G.P1./229/1442).

References

  1. O. Baykara, S.G. Irim, A.A. Wis, M.A. Keskin, G. Ozkoc, A. Avci, M. Dorgu, Polyimide nanocomposites in ternary structure: "A novel simultaneous neutron and gamma-ray shielding material", Polym. Adv. Technol. 31 (2020) 2466-2479. https://doi.org/10.1002/pat.4962
  2. F. Akman, Z.Y. Khattari, M.R. Kacal, M.I. Sayyed, F. Afaneh, The radiation shielding features for some silicide, boride and oxide types ceramic, Radiat. Phys. Chem. 160 (2019) 9-14. https://doi.org/10.1016/j.radphyschem.2019.03.001
  3. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J. Alloys Compd. 765 (2018) 451-458. https://doi.org/10.1016/j.jallcom.2018.06.240
  4. A.S. Wagha, S.Y. Sayenko, A.N. Dovbnya, V.A. Shkuropatenko, R.V. Tarasov, A.V. Rybka, A.A. Zakharchenko, Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields, J. Nucl. Mater. 462 (2015) 165-172. https://doi.org/10.1016/j.jnucmat.2015.03.049
  5. A.M.A. Mostafa, A.M. Shams, M.I. Sayyed, Gamma ray shielding properties of PbO-B2O3-P2O5 doped with WO3, J. Alloys Compd. 708 (2017) 294-300. https://doi.org/10.1016/j.jallcom.2017.02.303
  6. H.O. Tekin, M.I. Sayyed, Shams A.M. Issa, Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code, Radiat. Phys. Chem. 150 (2018) 95-100. https://doi.org/10.1016/j.radphyschem.2018.05.002
  7. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses, Radiat. Phys. Chem. 81 (2012) 785-790. https://doi.org/10.1016/j.radphyschem.2012.01.049
  8. S. Tuscharoen, J. Kaewkhao, P. Limkitjaroenporn, P. Limsuwan, W. Chewpraditkul, Improvement of BaO: B2O3:Fly ash glasses: radiation shielding, physical and optical properties, Ann. Nucl. Energy 49 (2012) 109-113. https://doi.org/10.1016/j.anucene.2012.05.017
  9. R.M. El-Sharkawy, K.S. Shaaban, R. Elsaman, E.A. Allam, A. El-Taher, M.E. Mahmoud, Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20-x) CdO based nanometal oxides, J. Non-Cryst. Solids 528 (2020), 119754. https://doi.org/10.1016/j.jnoncrysol.2019.119754
  10. G. Tyagi, A. Singhal, S. Routroy, D. Bhunia, M. Lahoti, A review on sustainable utilization of industrial wastes in radiation shielding concrete, Mater. Today Proc. 32 (2020) 746-751 (). https://doi.org/10.1016/j.matpr.2020.03.474
  11. S. Asal, S.A. Erenturk, S. Haciyakupoglu, Bentonite based ceramic materials from a perspective of gamma-ray shielding: preparation, characterization and performance evaluation, Nucl. Eng. Technol. 535 1634-1641 (2021).
  12. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M. R Kacal, An extensive investigation on gamma ray shielding features of Pd/Aγ-based alloys, Nucl. Eng. Technol. 51 ) ) 853-859 (2019) . https://doi.org/10.1016/j.net.2018.12.014
  13. I.M. Nikbin, A. Rafiee, S. Dezhampanah, S. Mehdipour, R. Mohebbi, H. H Moghadam, A. Sadrmomtazi, Effect of high temperature on the radiation shielding properties of cementitious composites containing nano-Bi2O3, J. Mater. Res. Technol. 9 (2020) 11135-11153 (). https://doi.org/10.1016/j.jmrt.2020.08.018
  14. M.I. Sayyed, K.A. Mahmoud, O.L. Tashlykov, M. U Khandaker, M.R. I Faruque, Enhancement of the shielding capability of soda-lime glasses with Sb2O3 dopant: a potential material for radiation safety in nuclear installations, Appl. Sci. 11 (2021) 326. . https://doi.org/10.3390/app11010326
  15. R.M. El-Sharkawy, E.A. Allam, A. El-Taher, E.R. Shaaban, M.E. Mahmoud, Synergistic effect of nano-bentonite and nano cadmium oxide doping concentrations on assembly, characterization, and enhanced gamma-rays shielding properties of polypropylene ternary nanocomposites, Int. J. Energy Res. 45 (2021) 8942-8959. https://doi.org/10.1002/er.6427
  16. A.S. Abouhaswa, E. Kavaz, A novel B2O3-Na2O-BaO-HgO glass system: synthesis, physical, optical and nuclear shielding features, Ceram. Int. 46 (2020) 16166-16177 (). https://doi.org/10.1016/j.ceramint.2020.03.172
  17. A.S. Abouhaswa, M.I. Sayyed, K.A. Mahmoud, Y. Al-Hadeethi, Direct influence of mercury oxide on structural, optical and radiation shielding properties of a new borate glass system, Ceram. Int. 46 (2020) 17978-17986 (). https://doi.org/10.1016/j.ceramint.2020.04.112
  18. S.M. Tajudin, A.H.A. Sabri, M.Z.A. Aziz, S.F. Olukotun, B.M. Ojo, M.K. Fasasi, Feasibility of clay-shielding material for low-energy photons (Gamma/X), Nucl. Eng. Technol. 51 (2019) 1633-1637. https://doi.org/10.1016/j.net.2019.04.020
  19. M.J. Aldhuhaibat, M.S. Amana, N.J. Jubier, A.A. Salim, Improved gamma radiation shielding traits of epoxy composites: evaluation of mass attenuation coefficient, effective atomic and electron number, Radiat, Phys. Chem. 179 (2021), 109183 (). https://doi.org/10.1016/j.radphyschem.2020.109183
  20. M.E. Mahmoud, A.M. El-Khatib, A.M. Halbas, R.M. El-Sharkawy, Ceramic tiles doped with lead oxide nanoparticles: their fabrication, physical, mechanical characteristics and γ-ray shielding performance, Radiat. Phys. Chem. 189 (2021), 109780. https://doi.org/10.1016/j.radphyschem.2021.109780
  21. B. Korpinar, B.C. Ozturk, N.F. Cam, H. Akat, Investigations on thermal and radiation shielding properties of the poly (hydroxy ethyl methacrylate-costyrene)/tungsten (VI) oxide composites, Prog.Nucl.Energy 126 (2020), 103424 (). https://doi.org/10.1016/j.pnucene.2020.103424
  22. S.F. Olukotun, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, H.O. Shittu, M.K. Fasasi, F.A. Balogun, Investigation of gamma radiation shielding capability of two clay materials, Nucl. Eng. Technol. 50 (2018) 957-962. . https://doi.org/10.1016/j.net.2018.05.003
  23. S.F. Olukotun, S.T. Gbenu, O.F. Oladejo, M.I. Sayyed, S.M. Tajudin, O.G. Fadodun, A.A. Amosun, M.K. Fasasi, Investigation of gamma ray shielding capability of fabricated clay-polyethylene composites using EGS5, XCOM and Phy-X/PSD, Radiat. Phys. Chem. 177 (2020), 109079 (). https://doi.org/10.1016/j.radphyschem.2020.109079
  24. H. Akyildirim, E. Kavaz, F.I. El-Agawany, E. Yousef, Y.S. Rammah, Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code, J. Non-Cryst. Solids 545 (2020), 120245 (). https://doi.org/10.1016/j.jnoncrysol.2020.120245
  25. A. Temir, K.S. Zhumadilov, M.V. Zdorovets, I.V. Korolkov, A. Kozlovskiy, A.V. Trukhanov, Synthesis, phase transformations, optical properties and efficiency of gamma radiation shielding by Bi2O3-TeO2-WO3 ceramics, Opt. Mater. 113 (2021), 110846 (). https://doi.org/10.1016/j.optmat.2021.110846
  26. I. Ebrahimi, M.P. Gashti, Chemically reduced versus photo-reduced clay-Ag-polypyrrole ternary nanocomposites: comparing thermal, optical, electrical and electromagnetic shielding properties, Mater. Res. Bull. 83 (2016) 96-107. https://doi.org/10.1016/j.materresbull.2016.05.024
  27. S. Akbulut, A. Sehhatigdiri, H. Eroglu, S. Celik, A research on the radiation shielding effects of clay, silica fume and cement samples, Radiat. Phys. Chem. 117 (2015) 88-92. . https://doi.org/10.1016/j.radphyschem.2015.08.003
  28. M.E. Mahmoud, R.M. El-Sharkawy, E.A. Allam, Reda Elsaman, Atef El-Taher, Fabrication and characterization of phosphotungstic acid - copper oxide nanoparticles - plastic waste nanocomposites for enhanced radiation-shielding, J. Alloys Compd. 803 (2019) 768-777. https://doi.org/10.1016/j.jallcom.2019.06.290
  29. M.E. Mahmoud, E.A. Allam, E.A. Saad, A.M. El-Khatib, M.A. Soliman, Remediation of Co/Zn ions and their 60Co/65Znradioactive nuclides from aqueous solutions by acid activated nanobentonite, Environ. Nanotechnol. Monit. Manag. 12 (2019), 100277. https://doi.org/10.1016/j.enmm.2019.100277
  30. M.E. Mahmoud, E.A. Allam, E.A. Saad, A.M. El-Khatib, M.A. Soliman, Intercalation of nanopolyaniline with nanobentonite and manganese oxide nanoparticles as a novel nanocomposite to remediate cobalt/zinc and their radioactive nuclides 60Co/65 Zn, J. Polym. Environ. 27 (2019) 421-433 (). https://doi.org/10.1007/s10924-018-1356-7
  31. E.A. Abdelrahman, R.M. Hegazey, Facile synthesis of HgO nanoparticles using hydrothermal method for efficient photocatalytic degradation of crystal violet dye under UV and sunlight irradiation, J. Inorg. Organomet. Polym. 29 (2019) 346-358 (). https://doi.org/10.1007/s10904-018-1005-6
  32. A. Askarinejad, A. Morsali, Synthesis and characterization of mercury oxide unusual nanostructures by ultrasonic method, Chem. Eng. J. 153 (2009) 183-186 (). https://doi.org/10.1016/j.cej.2009.05.031
  33. H.M.H. Zakaly, A. Ashry, A. El-Taher, A.G.E. Abbady, E.A. Allam, R.M. El-Sharkawy, M.E. Mahmoud, Role of novel ternary nanocomposites polypropylene in nuclear radiation attenuation properties: in-depth simulation study, Radiat. Phys. Chem. 188 (2021), 109667. https://doi.org/10.1016/j.radphyschem.2021.109667