DOI QR코드

DOI QR Code

Genome-wide analysis of Solanum lycopersicum L. cyclophilins

  • Khatun, Khadiza (Department of Biotechnology, Patuakhali Science and Technology University) ;
  • Robin, Arif Hasan Khan (Department of Genetics and Plant Breeding, Bangladesh Agricultural University) ;
  • Islam, Md. Rafiqul (Department of Biotechnology, Sher-e-Bangla Agricultural University) ;
  • Jyoti, Subroto Das (Department of Genetics and Plant Breeding, Bangladesh Agricultural University) ;
  • Lee, Do-Jin (Department of Biotechnology, Patuakhali Science and Technology University) ;
  • Kim, Chang Kil (Department of Horticultural Science, Kyungpook National University) ;
  • Chung, Mi-Young (Department of Agricultural Education, Sunchon National University)
  • Received : 2022.03.16
  • Accepted : 2022.03.26
  • Published : 2022.03.31

Abstract

Cyclophilins (CYPs) are highly conserved ubiquitous proteins belong to the peptidyl prolyl cis/trans isomerase (PPIase) superfamily. These proteins are present in a wide range of organisms; they contain a highly conserved peptidyl-prolyl cis/trans isomerase domain. A comprehensive database survey identified a total of 35 genes localized in all cellular compartments of Solanum lycopersicum L., but largely in the cytosol. Sequence alignment and conserved motif analyses of the SlCYP proteins revealed a highly conserved CLD motif. Evolutionary analysis predicted the clustering of a large number of gene pairs with high sequence similarity. Expression analysis using the RNA-Seq data showed that the majority of the SlCYP genes were highly expressed in mature leaves and blooming flowers, compared with their expression in other organs. This study provides a basis for the functional characterization of individual CYP genes in the future to elucidate their role(s) in protein refolding and long-distance signaling in tomatoes and in plant biology, in general.

Keywords

Acknowledgement

This work was carried out with the support of Sunchon National University Research Fund in 2021 (Grant number: 2021-0293) and "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01485801)" Rural Development Administration, Republic of Korea.

References

  1. Allain F, Denys A, Spik G (1994) Characterization of surface binding sites for cyclophilin B on a human tumor T-cell line. Journal of Biological Chemistry 269(24):16537-16540 https://doi.org/10.1016/S0021-9258(19)89421-8
  2. Anderson M, Fair K, Amero S, Nelson S, Harte PJ, Diaz MO (2002) A new family of cyclophilins with an RNA recognition motif that interact with members of the trx/MLL protein family in Drosophila and human cells. Development genes and evolution 212(3):107-113 https://doi.org/10.1007/s00427-002-0213-8
  3. Arevalo-Rodriguez M, Heitman J (2005) Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryotic Cell 4(1):17-29 https://doi.org/10.1128/EC.4.1.17-29.2005
  4. Aumuller T, Jahreis Gn, Fischer G, Schiene-Fischer C (2010) Role of prolyl cis/trans isomers in cyclophilin-assisted Pseudomonas syringae AvrRpt2 protease activation. Biochemistry 49(5):1042-1052 https://doi.org/10.1021/bi901813e
  5. Baker EK, Colley NJ, Zuker CS (1994) The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. The EMBO journal 13(20):4886-4895 https://doi.org/10.1002/j.1460-2075.1994.tb06816.x
  6. Barik S (2006) Immunophilins: for the love of proteins. Cellular and Molecular Life Sciences CMLS 63(24):2889-2900 https://doi.org/10.1007/s00018-006-6215-3
  7. Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21(11):932-939 https://doi.org/10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N
  8. Brazin KN, Mallis RJ, Fulton DB, Andreotti AH (2002) Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proceedings of the National Academy of Sciences 99(4):1899-1904 https://doi.org/10.1073/pnas.042529199
  9. Bukrinsky MI (2002) Cyclophilins: unexpected messengers in intercellular communications. Trends in immunology 23(7):323-325 https://doi.org/10.1016/S1471-4906(02)02237-8
  10. Cao Y, Han Y, Jin Q, Lin Y, Cai Y (2016) Comparative genomic analysis of the GRF genes in Chinese pear (Pyrus bretschneideri Rehd), poplar (Populous), grape (Vitis vinifera), Arabidopsis and rice (Oryza sativa). Frontiers in Plant Science 7:1750
  11. Chen C, Chen H, He Y, Xia R (2018) TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv:289660
  12. Cui P, Liu H, Ruan S, Ali B, Gill RA, Ma H, Zheng Z, Zhou W (2017) A zinc finger protein, interacted with cyclophilin, affects root development via IAA pathway in rice. Journal of integrative plant biology 59(7):496-505 https://doi.org/10.1111/jipb.12531
  13. Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proceedings of the National Academy of Sciences 95(12):7040-7045 https://doi.org/10.1073/pnas.95.12.7040
  14. Dubourg B, Kamphausen T, Weiwad M, Jahreis G, Feunteun J, Fischer G, Modjtahedi N (2004) The human nuclear SRcyp is a cell cycle-regulated cyclophilin. Journal of Biological Chemistry 279(21):22322-22330 https://doi.org/10.1074/jbc.M400736200
  15. Earley KW, Poethig RS (2011) Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. Journal of Biological Chemistry 286(44):38184-38189 https://doi.org/10.1074/jbc.M111.290130
  16. Galat A (1999) Variations of sequences and amino acid compositions of proteins that sustain their biological functions: an analysis of the cyclophilin family of proteins. Archives of Biochemistry and Biophysics 371(2):149-162 https://doi.org/10.1006/abbi.1999.1434
  17. Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Current topics in medicinal chemistry 3(12):1315-1347 https://doi.org/10.2174/1568026033451862
  18. Gasser CS, Gunning DA, Budelier KA, Brown SM (1990) Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cistrans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli. Proceedings of the National Academy of Sciences 87(24):9519-9523 https://doi.org/10.1073/pnas.87.24.9519
  19. Grebe M, Gadea J, Steinmann T, Kientz M, Rahfeld J-U, Salchert K, Koncz C, Jurgensa G (2000) A conserved domain of the Arabidopsis GNOM protein mediates subunit interaction and cyclophilin 5 binding. The Plant Cell 12(3):343-356 https://doi.org/10.2307/3870940
  20. GULLEROVA M, BARTA A, LORKOVIC ZJ (2006) AtCyp59 is a multidomain cyclophilin from Arabidopsis thaliana that interacts with SR proteins and the C-terminal domain of the RNA polymerase II. Rna 12(4):631-643 https://doi.org/10.1261/rna.2226106
  21. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226(4674):544-547 https://doi.org/10.1126/science.6238408
  22. He Z, Li L, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant physiology 134(4):1248-1267 https://doi.org/10.1104/pp.103.031005
  23. Iki T, Yoshikawa M, Meshi T, Ishikawa M (2012) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. The EMBO journal 31(2):267-278 https://doi.org/10.1038/emboj.2011.395
  24. Jing H, Yang X, Zhang J, Liu X, Zheng H, Dong G, Nian J, Feng J, Xia B, Qian Q (2015) Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nature Communications 6(1):1-10
  25. Kern G, Kern D, Schmid FX, Fischer G (1995) A kinetic analysis of the folding of human carbonic anhydrase II and its catalysis by cyclophilin. Journal of Biological Chemistry 270(2):740-745 https://doi.org/10.1074/jbc.270.2.740
  26. Klappa P, Freedman RB, Zimmermann R (1995) Protein disulphide isomerase and a lumenal cyclophilin-type peptidyl prolyl cis-trans isomerase are in transient contact with secretory proteins during late stages of translocation. European journal of biochemistry 232(3):755-764 https://doi.org/10.1111/j.1432-1033.1995.755zz.x
  27. Kong X, Lv W, Jiang S, Zhang D, Cai G, Pan J, Li D (2013) Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC genomics 14(1):1-15 https://doi.org/10.1186/1471-2164-14-1
  28. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39:309-338 https://doi.org/10.1146/annurev.genet.39.073003.114725
  29. Krzywicka A, Beisson J, Keller AM, Cohen J, Jerka-Dziadosz M, Klotz C (2001) KIN241: a gene involved in cell morphogenesis in Paramecium tetraurelia reveals a novel protein family of cyclophilin-RNA interacting proteins (CRIPs) conserved from fission yeast to man. Molecular microbiology 42(1):257-267 https://doi.org/10.1046/j.1365-2958.2001.02634.x
  30. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome research 19(9):1639-1645 https://doi.org/10.1101/gr.092759.109
  31. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research 30(1):325-327 https://doi.org/10.1093/nar/30.1.325
  32. Li H, He Z, Lu G, Lee SC, Alonso J, Ecker JR, Luan S (2007) A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. The Plant Cell 19(8):2403-2416 https://doi.org/10.1105/tpc.107.053579
  33. Li H, Luan S (2011) The cyclophilin AtCYP71 interacts with CAF-1 and LHP1 and functions in multiple chromatin remodeling processes. Molecular plant 4(4):748-758 https://doi.org/10.1093/mp/ssr036
  34. Lin D-T, Lechleiter JD (2002) Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. Journal of Biological Chemistry 277(34):31134-31141 https://doi.org/10.1074/jbc.M112035200
  35. Lin Y, Cheng Y, Jin J, Jin X, Jiang H, Yan H, Cheng B (2014) Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. PloS one 9(7):e102825 https://doi.org/10.1371/journal.pone.0102825
  36. Liu J, Chen CM, Walsh CT (1991) Human and Escherichia coli cyclophilins: sensitivity to inhibition by the immunosuppressant cyclosporin A correlates with a specific tryptophan residue. Biochemistry 30(9):2306-2310 https://doi.org/10.1021/bi00223a003
  37. Mainali HR, Chapman P, Dhaubhadel S (2014) Genome-wide analysis of Cyclophilin gene family in soybean (Glycine max). BMC plant biology 14(1):282 https://doi.org/10.1186/s12870-014-0282-7
  38. Mainali HR, Vadivel AKA, Li X, Gijzen M, Dhaubhadel S (2017) Soybean cyclophilin GmCYP1 interacts with an isoflavonoid regulator GmMYB176. Scientific reports 7(1):1-12 https://doi.org/10.1038/s41598-016-0028-x
  39. McLysaght A, Enright AJ, Skrabanek L, Wolfe KH (2000) Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17(1):22-36 https://doi.org/10.1002/(SICI)1097-0061(200004)17:1<22::AID-YEA5>3.0.CO;2-S
  40. Oh K, Ivanchenko MG, White T, Lomax TL (2006) The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signaling. Planta 224(1):133-144 https://doi.org/10.1007/s00425-005-0202-z
  41. Pemberton TJ (2006) Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires. BMC genomics 7(1):244 https://doi.org/10.1186/1471-2164-7-244
  42. Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA (2014) Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 538(1):12-22 https://doi.org/10.1016/j.gene.2014.01.029
  43. Romano PG, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant physiology 134(4):1268-1282 https://doi.org/10.1104/pp.103.022160
  44. Schiene-Fischer C, Yu C (2001) Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS letters 495(1-2):1-6 https://doi.org/10.1016/S0014-5793(01)02326-2
  45. Stangeland B, Nestestog R, Grini PE, Skrbo N, Berg A, Salehian Z, Mandal A, Aalen RB (2005) Molecular analysis of Arabidopsis endosperm and embryo promoter trap lines: reporter-gene expression can result from T-DNA insertions in antisense orientation, in introns and in intergenic regions, in addition to sense insertion at the 5' end of genes. Journal of experimental botany 56(419):2495-2505 https://doi.org/10.1093/jxb/eri242
  46. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 30(12):2725-2729 https://doi.org/10.1093/molbev/mst197
  47. Trivedi DK, Yadav S, Vaid N, Tuteja N (2012) Genome wide analysis of Cyclophilin gene family from rice and Arabidopsis and its comparison with yeast. Plant signaling & behavior 7(12):1653-1666 https://doi.org/10.4161/psb.22306
  48. Vasudevan D, Gopalan G, Kumar A, Garcia VJ, Luan S, Swaminathan K (2015) Plant immunophilins: a review of their structure-function relationship. Biochimica et Biophysica Acta (BBA)-General Subjects 1850(10):2145-2158 https://doi.org/10.1016/j.bbagen.2014.12.017
  49. Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC plant biology 10(1):282 https://doi.org/10.1186/1471-2229-10-282
  50. Wang P, Heitman J (2005) The cyclophilins. Genome biology 6(7):1-6
  51. Yan H, Zhou B, He W, Nie Y, Li Y (2018) Expression characterisation of cyclophilin BrROC1 during light treatment and abiotic stresses response in Brassica rapa subsp. rapa 'Tsuda'. Functional Plant Biology 45(12):1223-1232 https://doi.org/10.1071/fp18029
  52. Zander K, Sherman MP, Tessmer U, Bruns K, Wray V, Prechtel AT, Schubert E, Henklein P, Luban J, Neidleman J (2003) Cyclophilin A interacts with HIV-1 Vpr and is required for its functional expression. Journal of Biological Chemistry 278(44):43202-43213 https://doi.org/10.1074/jbc.M305414200
  53. Zhang Q, Edwards SV (2012) The evolution of intron size in amniotes: a role for powered flight? Genome biology and evolution 4(10):1033-1043 https://doi.org/10.1093/gbe/evs070
  54. Zydowsky LD, Etzkorn FA, Chang HY, Ferguson SB, Stolz LA, Ho SI, Walsh CT (1992) Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition. Protein Science 1(9):1092-1099 https://doi.org/10.1002/pro.5560010903