Acknowledgement
This research was funded by the Korea Fisheries Resources Agency, Korea (FIRA-RP-21-003), and partially supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), the Ministry of Education (2021R1A6A1A03039211).
References
- Abdul-Muneer PM. Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int. 2014;2014:691759. https://doi.org/10.1155/2014/691759
- Alam MJ, Kim NK, Andriyono S, Choi HK, Lee JH, Kim HW. Assessment of fish biodiversity in four Korean rivers using environmental DNA metabarcoding. PeerJ. 2020;8:e9508. https://doi.org/10.7717/peerj.9508
- Allentoft ME, Collins M, Harker D, Haile J, Oskam CL, Hale ML, et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc Biol Sci. 2012;279:4724-33.
- Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29 Suppl 1:S49-52.
- Azarian C, Foster S, Devloo-Delva F, Feutry P. Population differentiation from environmental DNA: investigating the potential of haplotype presence/absence-based analysis of molecular variance. Environ DNA. 2021;3:541-52. https://doi.org/10.1002/edn3.143
- Bastos Gomes G, Hutson KS, Domingos JA, Chung C, Hayward S, Miller TL, et al. Use of environmental DNA (eDNA) and water quality data to predict protozoan parasites outbreaks in fish farms. Aquaculture. 2017;479:467-73. https://doi.org/10.1016/j.aquaculture.2017.06.021
- Bogenhagen D, Clayton DA. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells: quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem. 1974;249:7991-5. https://doi.org/10.1016/S0021-9258(19)42063-2
- Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol. 2014;29:358-67. https://doi.org/10.1016/j.tree.2014.04.003
- Bonar SA, Hubert WA, Willis DW. Standard methods for sampling North American freshwater fishes. Bethesda, MD: American Fisheries Society; 2009.
- Bos DH, Gopurenko D, Williams RN, DeWoody JA. Inferring population history and demography using microsatellites, mitochondrial DNA, and major histocompatibility complex (MHC) genes. Evol Int J Org Evol. 2008;62:1458-68. https://doi.org/10.1111/j.1558-5646.2008.00364.x
- Brown WM, Prager EM, Wang A, Wilson AC. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18:225-39. https://doi.org/10.1007/BF01734101
- Claassen S, du Toit E, Kaba M, Moodley C, Zar HJ, Nicol MP. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods. 2013;94:103-10. https://doi.org/10.1016/j.mimet.2013.05.008
- Das J. The role of mitochondrial respiration in physiological and evolutionary adaptation. BioEssays. 2006;28:890-901. https://doi.org/10.1002/bies.20463
- Dauphin LA, Stephens KW, Eufinger SC, Bowen MD. Comparison of five commercial DNA extraction kits for the recovery of Yersinia pestis DNA from bacterial suspensions and spiked environmental samples. J Appl Microbiol. 2009;108:163-72. https://doi.org/10.1111/j.1365-2672.2009.04404.x
- D'Erchia AM, Atlante A, Gadaleta G, Pavesi G, Chiara M, De Virgilio C, et al. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion. 2015;20:13-21. https://doi.org/10.1016/j.mito.2014.10.005
- DeSalle R, Schierwater B, Hadrys H. MtDNA: the small workhorse of evolutionary studies. Front Biosci. 2017;22:873-87. https://doi.org/10.2741/4522
- Dong Y, Dong S. Growth and oxygen consumption of the juvenile sea cucumber Apostichopus japonicus (Selenka) at constant and fluctuating water temperatures. Aquac Res. 2006;37:1327-33. https://doi.org/10.1111/j.1365-2109.2006.01570.x
- El Bali L, Diman A, Bernard A, Roosens NHC, De Keersmaecker SCJ. Comparative study of seven commercial kits for human DNA extraction from urine samples suitable for DNA biomarker-based public health studies. J Biomol Tech. 2014;25:96-110.
- Evans NT, Li Y, Renshaw MA, Olds BP, Deiner K, Turner CR, et al. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Can J Fish Aquat Sci. 2017;74:1362-74. https://doi.org/10.1139/cjfas-2016-0306
- Evrard O, Laceby JP, Ficetola GF, Gielly L, Huon S, Lefevre I, et al. Environmental DNA provides information on sediment sources: a study in catchments affected by Fukushima radioactive fallout. Sci Total Environ. 2019;665:873-81. https://doi.org/10.1016/j.scitotenv.2019.02.191
- Forootan A, Sjoback R, Bjorkman J, Sjogreen B, Linz L, Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif. 2017;12:1-6. https://doi.org/10.1016/j.bdq.2017.04.001
- Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol. 2016;7:1299-307. https://doi.org/10.1111/2041-210x.12595
- Harrison RG. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol. 1989;4:6-11. https://doi.org/10.1016/0169-5347(89)90006-2
- Hinlo R, Gleeson D, Lintermans M, Furlan E. Methods to maximise recovery of environmental DNA from water samples. PLOS ONE. 2017;12:e0179251. https://doi.org/10.1371/journal.pone.0179251
- Hoshino T, Inagaki F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol. 2012;35:390-5. https://doi.org/10.1016/j.syapm.2012.06.006
- Jiang J, Yu J, Li J, Li P, Fan Z, Niu L, et al. Mitochondrial genome and nuclear markers provide new insight into the evolutionary history of macaques. PLOS ONE. 2016;11:e0154665. https://doi.org/10.1371/journal.pone.0154665
- Jo T, Arimoto M, Murakami H, Masuda R, Minamoto T. Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environ DNA. 2020;2:140-51. https://doi.org/10.1002/edn3.51
- Jo T, Murakami H, Yamamoto S, Masuda R, Minamoto T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol Evol. 2019;9:1135-46. https://doi.org/10.1002/ece3.4802
- Klymus KE, Merkes CM, Allison MJ, Goldberg CS, Helbing CC, Hunter ME, et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ DNA. 2020;2:271-82. https://doi.org/10.1002/edn3.29
- Kwong SLT, Villacorta-Rath C, Doyle J, Uthicke S. Quantifying shedding and degradation rates of environmental DNA (eDNA) from Pacific crown-of-thorns seastar (Acanthaster cf. solaris). Mar Biol. 2021;168:1-10. https://doi.org/10.1007/s00227-020-03798-4
- Larionov A, Krause A, Miller W. A standard curve based method for relative real time PCR data processing. BMC Bioinf. 2005;6:1-16. https://doi.org/10.1186/1471-2105-6-1
- Lin C, Zhang L. Habitat enhancement and rehabilitation. Dev Aquac Fish Sci. 2015;39:333-51. https://doi.org/10.1016/B978-0-12-799953-1.00018-0
- Liu J. Spatial distribution, population structures, management, and conservation. Dev Aquac Fish Sci. 2015;39:77-86. https://doi.org/10.1016/B978-0-12-799953-1.00005-2
- Liu Y. Study on aestivating habit of sea cucumber Apostichopus japonicus (Selenka). J Fish Sci China. 1996;3:17-57.
- Liu Y, Liu S, Yeh CF, Zhang N, Chen G, Que P, et al. The first set of universal nuclear protein-coding loci markers for avian phylogenetic and population genetic studies. Sci Rep. 2018;8:1-12. https://doi.org/10.1038/s41598-017-17765-5
- Merheb M, Matar R, Hodeify R, Siddiqui SS, Vazhappilly CG, Marton J, et al. Mitochondrial DNA, a powerful tool to decipher ancient human civilization from domestication to music, and to uncover historical murder cases. Cells. 2019;8:433. https://doi.org/10.3390/cells8050433
- Morita K, Fukuwaka M, Tanimata N, Yamamura O. Size-dependent thermal preferences in a pelagic fish. Oikos. 2010;119:1265-72. https://doi.org/10.1111/j.1600-0706.2009.18125.x
- Murphy BR, Willis DW. Fisheries techniques. Citeseer; 1996.
- Ortiz-Pineda PA, Ramirez-Gomez F, Perez-Ortiz J, Gonzalez-Diaz S, Santiago-De Jesus F, Hernandez-Pasos J, et al. Gene expression profiling of intestinal regeneration in the sea cucumber. BMC Genomics. 2009;10:262. https://doi.org/10.1186/1471-2164-10-262
- Parsons KM, Durban JW, Claridge DE. Comparing two alternative methods for sampling small cetaceans for molecular analysis. Mar Mamm Sci. 2003;19:224-31. https://doi.org/10.1111/j.1748-7692.2003.tb01104.x
- Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC. Review: the detection of aquatic animal species using environmental DNA: a review of eDNA as a survey tool in ecology. J Appl Ecol. 2014;51:1450-9. https://doi.org/10.1111/1365-2664.12306
- Robin ED, Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol. 1988;136:507-13. https://doi.org/10.1002/jcp.1041360316
- Shen X, Tian M, Liu Z, Cheng H, Tan J, Meng X, et al. Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern. Gene. 2009;439:79-86. https://doi.org/10.1016/j.gene.2009.03.008
- Sigsgaard EE, Nielsen IB, Bach SS, Lorenzen ED, Robinson DP, Knudsen SW, et al. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat Ecol Evol. 2016;1:0004. https://doi.org/10.1038/s41559-016-0004
- Sultana GNN, Sultan MZ. Mitochondrial DNA and methods for forensic identification. J Forensic Sci Criminal Invest. 2018;9.
- Takahara T, Minamoto T, Doi H. Effects of sample processing on the detection rate of environmental DNA from the common carp (Cyprinus carpio). Biol Conserv. 2015;183:64-9. https://doi.org/10.1016/j.biocon.2014.11.014
- Thalinger B, Deiner K, Harper LR, Rees HC, Blackman RC, Sint D, et al. A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environ DNA. 2021;3:823-36. https://doi.org/10.1002/edn3.189
- Tomaso H, Kattar M, Eickhoff M, Wernery U, Al Dahouk S, Straube E, et al. Comparison of commercial DNA preparation kits for the detection of Brucellae in tissue using quantitative real-time PCR. BMC Infect Dis. 2010;10:100. https://doi.org/10.1186/1471-2334-10-100
- Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83:52-62. https://doi.org/10.1095/biolreprod.109.080887
- Xu D, Sun L, Liu S, Zhang L, Yang H. Understanding the heat shock response in the sea cucumber Apostichopus japonicus, using iTRAQ-based proteomics. Int J Mol Sci. 2016;17:150. https://doi.org/10.3390/ijms17020150
- Yamanaka H, Motozawa H, Tsuji S, Miyazawa RC, Takahara T, Minamoto T. On-site filtration of water samples for environmental DNA analysis to avoid DNA degradation during transportation. Ecol Res. 2016;31:963-7. https://doi.org/10.1007/s11284-016-1400-9
- Yang H, Yuan X, Zhou Y, Mao Y, Zhang T, Liu Y. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquac Res. 2005;36:1085-92. https://doi.org/10.1111/j.1365-2109.2005.01325.x
- Yu H, Gao Q, Dong S, Lan Y, Ye Z, Wen B. Regulation of dietary glutamine on the growth, intestinal function, immunity and antioxidant capacity of sea cucumber Apostichopus japonicus (Selenka). Fish Shellfish Immunol. 2016;50:56-65. https://doi.org/10.1016/j.fsi.2016.01.024
- Yunwei D, Shuanglin D, Xiangli T, Meizhao Z, Fang W. Effects of water temperature on growth, respiration and body composition of young sea cucumber Apostichopus japonicus. J Fish Sci China. 2005;12:33-7. https://doi.org/10.3321/j.issn:1005-8737.2005.01.007
- Zipper H, Buta C, Lammle K, Brunner H, Bernhagen J, Vitzthum F. Mechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments. Nucleic Acids Res. 2003;31:e39. https://doi.org/10.1093/nar/gng039