DOI QR코드

DOI QR Code

다중 코팅 폴리에스터 섬유 여재의 항균 및 항바이러스 특성

Antibacterial and Antiviral Activities of Multi-coating Polyester Textiles

  • 고상원 (한국철도기술연구원 교통환경연구실) ;
  • 이재영 (한국철도기술연구원 교통환경연구실) ;
  • 박덕신 (한국철도기술연구원 교통환경연구실)
  • Ko, Sangwon (Transportation Environmental Research Department, Korea Railroad Research Institute) ;
  • Lee, Jae-Young (Transportation Environmental Research Department, Korea Railroad Research Institute) ;
  • Park, Duckshin (Transportation Environmental Research Department, Korea Railroad Research Institute)
  • 투고 : 2022.07.25
  • 심사 : 2022.07.28
  • 발행 : 2022.08.10

초록

본 연구에서는 다중 코팅 폴리에스터(PET) 섬유 여재의 항바이러스 소재 응용 가능성을 고찰하기 위해 금속산화물, 키토산, 및 구리이온의 첨착 조건에 따른 PET의 항균 및 항바이러스 성능을 평가하였다. 항균 물질이 단독으로 코팅된 PET 대비 다중 코팅 PET의 경우 첨착량을 감소시킬 수 있을 뿐만 아니라 배양 후 박테리아가 육안상으로 검출되지 않는데(< 10 CFU/mL) 필요한 균 접촉시간을 단축할 수 있음을 확인하였다. 금속산화물은 촉매반응에 의해 라디칼 등의 산소 활성종을 생성하며, 구리이온은 접촉 살균 효과를 가지면서 산소 활성종에 의한 박테리아와 바이러스의 손상에 기여한다. 키토산은 구리이온의 배위결합을 통한 고정화뿐만 아니라 아민기에 의한 살균 효과로 코팅 PET의 항균 성능 향상 효과를 보였다. 다중 코팅 PET는 대장균과 황색포도상구균에 대한 항균 효과 외에 인플루엔자 A (H1N1)와 SARS-CoV-2에 대해 99.9% 이상의 항바이러스 효과가 있음을 확인하였다. 대면적 roll-to-roll 공정을 통해서도 다중 코팅 PET 섬유 여재의 제조가 가능하고 높은 항바이러스 성능이 유지됨을 보였으며, 이는 공기정화용 필터, 마스크, 및 개인 보호용구과 같은 항바이러스 직물 소재로서 관련 산업에 응용될 수 있음을 시사한다.

The effect of coated polyester (PET) textiles with metal oxide, chitosan, and copper ion on the antibacterial and antiviral activities was evaluated to investigate the applicability of multi-coated PET textiles as antiviral materials. Compared to coated PETs with a single agent, multi-coated PETs reduced the loading amount of coating materials as well as the contact time with bacteria for a bacterial cell number of < 10 CFU/mL, which was not detectable with the naked eyes. Metal oxides generate reactive oxygen species (ROS) such as free radicals by a catalytic reaction, and copper ions can promote contact killing by the generation of ROS. Chitosan not only enhanced antibacterial activities due to amine groups, but enabled it to be a template to load copper ions. We observed that multi-coated PET textiles have both antibacterial activities for E. coli and S. aureus and antiviral efficiency of more than 99.9% for influenza A (H1N1) and SARS-CoV-2. The multi-coated PET textiles could also be prepared via a roll-to-roll coating process, which showed high antiviral efficacy, demonstrating its potential use in air filtration and antiviral products such as masks and personal protective equipment.

키워드

과제정보

본 연구는 국토교통과학기술진흥원의 연구비 지원으로 수행되었습니다(22CTAP-C163614-02).

참고문헌

  1. S.-B. Kwon, J. Park, J. Jang, Y. Cho, D.-S. Park, C. Kim, G.-N. Bae, and A. Jang, Study on the initial velocity distribution of exhaled air from coughing and speaking, Chemosphere, 87, 1260-1264 (2012). https://doi.org/10.1016/j.chemosphere.2012.01.032
  2. I. T. Yu, Y. Li, T. W. Wong, W. Tam, A. T. Chan, J. H. Lee, D. Y. Leung, and T. Ho, Evidence of airborne transmission of the severe acute respiratory syndrome virus, N. Engl. J. Med., 350, 1731-1739 (2004). https://doi.org/10.1056/NEJMoa032867
  3. S. Ko, W. Jeong, D. Park, and S.-B. Kwon, Numerical analysis of droplets exhaled by train cabin passengers, J. Odor Indoor Environ., 18, 131-139 (2019). https://doi.org/10.15250/joie.2019.18.2.131
  4. N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, and V. J. Munster, Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1, N. Engl. J. Med., 382, 1564-1567 (2020). https://doi.org/10.1056/nejmc2004973
  5. R. Hirose, H. Ikegaya, Y. Naito, N. Watanabe, T. Yoshida, R. Bandou, T. Daidoji, Y. Itoh, and T. Nakaya, Survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus on human skin: importance of hand hygiene in coronavirus disease 2019 (COVID-19), Clin. Infect. Dis., 73, e4329-e4335 (2021). https://doi.org/10.1093/cid/ciaa1517
  6. A. J. Prussin, II, A. Vikram, K. J. Bibby, and L. C. Marr, Seasonal dynamics of the airborne bacterial community and selected viruses in a children's daycare center, PLoS ONE, 11, e0151004 (2016). https://doi.org/10.1371/journal.pone.0151004
  7. M. Cloutier, D. Mantovani, and F. Rosei, Antibacterial coatings: Challenges, Perspectives, and Opportunities, Trends Biotechnol., 33, 637-652 (2015). https://doi.org/10.1016/j.tibtech.2015.09.002
  8. S. Ko, J.-Y. Lee, and D. Park, Recent progress of antibacterial coatings on solid substrates through antifouling polymers, Appl. Chem. Eng., 32, 371-378 (2021). https://doi.org/10.14478/ACE.2021.1048
  9. J. Y. Kim, H.-J. Park, and J. Yoon, Antimicrobial activity and mechanism for various nanoparticles, Appl. Chem. Eng., 21, 366-371 (2010).
  10. K. Choi, T. Kim, S. Yun, J. Yoon, and J.-C. Lee, Development of antimicrobial N-halamine containing alkyl chain for paint, Appl. Chem. Eng., 22, 45-47 (2011).
  11. R. Pemmada, X. Zhu, M. Dash, Y. Zhou, S. Ramakrishna, X. Peng, V. Thomas, S. Jain, and H. S. Nanda, Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics, Materials, 13, 4041 (2020). https://doi.org/10.3390/ma13184041
  12. S. Jung, J.-Y. Yang, E.-Y. Byeon, D.-G. Kim, D.-G. Lee, S. Ryoo, S. Lee, C.-W. Shin, H. W. Jang, H. J. Kim, and S. Lee, Copper-coated polypropylene filter face mask with SARS-CoV-2 antiviral ability, Polymers, 13, 1367 (2021). https://doi.org/10.3390/polym13091367
  13. G. Borkow, R. W. Sidwell, D. F. Smee, D. L. Barnard, J. D. Morrey, H. H. Lara-Villegas, Y. Shemer-Avni, and J. Gabbay, Neutralizing viruses in suspensions by copper oxide-based filters, Antimicrob. Agents Chemother., 51, 2605-2607 (2007). https://doi.org/10.1128/AAC.00125-07
  14. G. Borkow, S. S. Zhou, T. Page, and J. Gabbay, A novel anti-influenza copper oxide containing respiratory face mask, PLoS ONE, 5, e11295 (2010). https://doi.org/10.1371/journal.pone.0011295
  15. K. Imai, H. Ogawa, V. N. Bui, H. Inoue, J. Fukuda, M. Ohba, Y. Yamamoto, and K. Nakamura, Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials, Antivir. Res., 93, 225-233 (2012). https://doi.org/10.1016/j.antiviral.2011.11.017
  16. M. Versoza, J. Heo, S. Ko, M. Kim, and D. Park, Solid oxygen-purifying (SOP) filters: A self-disinfecting fitlers to inactive aerosolized viruses, Int. J. Environ. Res. Public Health, 17, 7858 (2020). https://doi.org/10.3390/ijerph17217858
  17. R. Davis, S. Zivanovic, D. H. D'Souza, and P. M. Davidson, Effectiveness of chitosan on the inactivation of enteric viral surrogates, Food Microbiol., 32, 57-62 (2012). https://doi.org/10.1016/j.fm.2012.04.008
  18. Y. Xue, X. Gu, S. Lu, Z. Miao, M. L. Brusseau, M. Xu, X. Fu, X. Zhang, Z. Qiu, and Q. Sui, The destruction of benzene by calcium peroxide activated with Fe(II) in water, Chem. Eng. J., 302, 187-193 (2016). https://doi.org/10.1016/j.cej.2016.05.016
  19. X. Zhang, X. Gu, S. Lu, M. L. Brusseau, M. Xu, X. Fu, Z. Qiu, and Q. Sui, Application of ascorbic acid to enhance trichloroethene degradation by Fe(III)-activated calcium peroxide, Chem. Eng. J., 325, 188-198 (2017). https://doi.org/10.1016/j.cej.2017.05.004
  20. Y.-J. Chang, Y.-T. Chang, and C.-H. Hung, The use of magnesium peroxide for the inhibition of sulfate-reducing bacteria under anoxic conditions, J. Ind. Microbiol. Biotechnol., 35, 1481-1491 (2008). https://doi.org/10.1007/s10295-008-0450-6
  21. G. Grass, C. Rensing, and M. Solioz, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77, 1541-1547 (2011). https://doi.org/10.1128/AEM.02766-10
  22. J. Yang, Z. Ao, H. Wu, and S. Zhang, Immobilization of chitosan-templated MnO2 nanoparticles onto filter paper by redox method as a retrievable Fenton-like dip catalyst, Chemosphere, 268, 128835 (2021). https://doi.org/10.1016/j.chemosphere.2020.128835
  23. K. Hwang, Antiviral activity of chitosan, chitin and polysaccharides derived from seaweed, J. Chitin Chitosan, 25, 93-104 (2020). https://doi.org/10.17642/jcc.25.2.6
  24. S. Ko, Multifunctional surface coating using chitosan and its chemical functionalization, Bull. Korean Chem. Soc., 43, DOI: 10.1002/bkcs.12600 (2022).
  25. J. J. T. M. Swartjes, P. K. Sharma, T. G. van Kooten, H. C. van der Mei, M. Mahmoudi, H. J. Busscher, and E. T. J. Rochford, Current developments in antimicrobial surface coatings for biomedical applications, Curr. Med. Chem., 22, 2116-2129 (2015). https://doi.org/10.2174/0929867321666140916121355
  26. H. Tan, R. Ma, C. Lin, Z. Liu, and T. Tang, Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics, Int. J. Mol. Sic., 14, 1854-1869 (2013). https://doi.org/10.3390/ijms14011854
  27. K. Yu, J. Ho, E. McCandlish, B. Buckley, R. Patel, Z. Li, and N. C. Shapley, Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications, Colloids Surf. A Physicochem. Eng. Asp., 425, 31-41 (2013). https://doi.org/10.1016/j.colsurfa.2012.12.043
  28. T. Flerlage, D. F. Boyd, V. Meliopoulos, P. G. Thomas, and S. Schultz-Cherry, Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract, Nat. Rev. Microbiol., 19, 425-441 (2021). https://doi.org/10.1038/s41579-021-00542-7
  29. C. Cermelli, A. Cuoghi, M. Scuri, C. Bettua, R. Neglia, A, Ardizzoni, E. Blasi, T. Iannitti, and B. Palmieri, In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid, Virol. J., 8, 141 (2011). https://doi.org/10.1186/1743-422X-8-141