DOI QR코드

DOI QR Code

Application of machine learning methods for predicting the mechanical properties of rubbercrete

  • Miladirad, Kaveh (Department of Civil Engineering, Science and Research Branch, Islamic Azad University) ;
  • Golafshani, Emadaldin Mohammadi (Department of Civil Engineering, Monash University) ;
  • Safehian, Majid (Department of Civil Engineering, Science and Research Branch, Islamic Azad University) ;
  • Sarkar, Alireza (Department of Civil Engineering, Science and Research Branch, Islamic Azad University)
  • Received : 2021.05.30
  • Accepted : 2022.06.07
  • Published : 2022.07.25

Abstract

The use of waste rubber in concrete can reduce natural aggregate consumption and improve some technical properties of concrete. Although there are several equations for estimating the mechanical properties of concrete containing waste rubber, limited numbers of machine learning-based models have been proposed to predict the mechanical properties of rubbercrete. In this study, an extensive database of the mechanical properties of rubbercrete was gathered from a comprehensive survey of the literature. To model the mechanical properties of rubbercrete, M5P tree and linear gene expression programming (LGEP) methods as two machine learning techniques were employed to achieve reliable mathematical equations. Two procedures of input variable selection were considered in this study. The crucial component ratios of rubbercrete and concrete age were assumed as the input variables in the first procedure. In contrast, the volumes of the coarse and fine waste rubber and the compressive strength of concrete without waste rubber were considered the second procedure of the input variables. The results show that the models obtained by LGEP are more accurate than those achieved by the M5P model tree and existing traditional equations. Besides, the volumes of the coarse and fine waste rubber and the compressive strength of concrete without waste rubber are better predictors of the mechanical properties of rubbercrete compared to the first procedure of input variable selection.

Keywords

References

  1. Abd-Elaal, E.S., Araby, S., Mills, J.E., Youssf, O., Roychand, R., Ma, X., Zhuge, Y. and Gravina, R.J. (2019), "Novel approach to improve crumb rubber concrete strength using thermal treatment", Constr. Build. Mater., 229, 116901. https://doi.org/10.1016/j.conbuildmat.2019.116901
  2. Ashrafian, A., Gandomi, A.H., Rezaie-Balf, M. and Emadi, M. (2020), "An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement", Measurement: J. Int. Measure. Confed., 152, 107309. https://doi.org/10.1016/j.measurement.2019.107309
  3. Bala, A., Sehgal, V.K. and Saini, B. (2014), Effect of Fly ash and Waste Rubber on Properties of Concrete Composite. Www.Crl.Issres.Net
  4. Balaha, M.M., Badawy, A.A.M. and Hashish, M. (2007), "Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes", Indian J. Eng. Mater. Sci., pp. 427-435.
  5. Batayneh, M.K., Marie, I. and Asi, I. (2008), "Promoting the use of crumb rubber concrete in developing countries", Waste Manag., 28(11), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035
  6. Behnood, A. and Daneshvar, D. (2020), "A machine learning study of the dynamic modulus of asphalt concretes: An application of M5P model tree algorithm", Constr. Build. Mater., 262, 120544. https://doi.org/10.1016/j.conbuildmat.2020.120544
  7. Behnood, A. and Golafshani, E.M. (2020), "Machine learning study of the mechanical properties of concretes containing waste foundry sand", Constr. Build. Mater., 243, 118152. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118152
  8. Behnood, A., Behnood, V., Modiri Gharehveran, M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061
  9. Bompa, D.V., Elghazouli, A.Y., Xu, B., Stafford, P.J. and Ruiz-Teran, A.M. (2017), "Experimental assessment and constitutive modelling of rubberised concrete materials", Constr. Build. Mater., 137, 246-260. https://doi.org/10.1016/j.conbuildmat.2017.01.086
  10. Carroll, J.C. and Helminger, N. (2016), "Fresh and hardened properties of fiber-reinforced rubber concrete", J. Mater. Civil Eng., 28(7), 04016027. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001541
  11. Eldin, N.N. and Senouci, A.B. (1993), "Rubber-tire particles as concrete aggregate", J. Mater. Civil Eng., 5(4), 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)
  12. Eldin, N.N. and Senouci, A.B. (1994), "Measurement and prediction of the strength of rubberized concrete", Cement Concrete Compos., 16(4), 287-298. https://doi.org/10.1016/0958-9465(94)90041-8
  13. Feng, W., Liu, F., Yang, F., Li, L. and Jing, L. (2018), "Experimental study on dynamic split tensile properties of rubber concrete", Constr. Build. Mater., 165, 675-687. https://doi.org/10.1016/j.conbuildmat.2018.01.073
  14. Feng, W., Liu, F., Yang, F., Li, L., Jing, L., Chen, B. and Yuan, B. (2019), "Experimental study on the effect of strain rates on the dynamic flexural properties of rubber concrete", Constr. Build. Mater., 224, 408-419. https://doi.org/10.1016/j.conbuildmat.2019.07.084
  15. Ferreira, C. (2001), "Gene expression programming: a new adaptive algorithm for solving problems", ArXiv Preprint Cs/0102027.
  16. Gesoglu, M. and Guneyisi, E. (2007), "Strength development and chloride penetration in rubberized concretes with and without silica fume", Mater. Struct./Materiaux et Constructions, 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0
  17. Gesoglu, M., Guneyisi, E. and Ozturan, T. (2005), "Use of recycled tyre rubber as aggregates in silica fume concrete", Proceedings of the International Conference on Achieving Sustainability in Construction.
  18. Gesoglu, M., Guneyisi, E., Hansu, O., Ipek, S. and Asaad, D.S. (2015), "Influence of waste rubber utilization on the fracture and steel-concrete bond strength properties of concrete", Constr. Build. Mater., 101, 1113-1121. https://doi.org/10.1016/j.conbuildmat.2015.10.030
  19. Gholampour, A., Gandomi, A.H. and Ozbakkaloglu, T. (2017), "New formulations for mechanical properties of recycled aggregate concrete using gene expression programming", Constr. Build. Mater., 130, 122-145. https://doi.org/10.1016/j.conbuildmat.2016.10.114
  20. Golafshani, E.M. and Behnood, A. (2018), "Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete", Appl. Soft Comput. J., 64, 377-400. https://doi.org/10.1016/j.asoc.2017.12.030
  21. Golafshani, E.M. and Behnood, A. (2019), "Estimating the optimal mix design of silica fume concrete using biogeography-based programming", Cement Concrete Compos., 96, 95-105. https://doi.org/10.1016/j.cemconcomp.2018.11.005
  22. Golafshani, E.M., Arashpour, M. and Kashani, A. (2021), "Green mix design of rubbercrete using machine learning-based ensemble model and constrained multi-objective optimization", J. Cleaner Product., 327, 129518. https://doi.org/10.1016/j.jclepro.2021.129518
  23. Golafshani, E.M., Arashpour, M. and Behnood, A. (2022), "Predicting the compressive strength of green concretes using Harris hawks optimization-based data-driven methods", Constr. Build. Mater., 318, 125944. https://doi.org/10.1016/j.conbuildmat.2021.125944
  24. Grdic, Z., Toplicic-Curcic, G., Ristic, N., Grdic, D. and Mitkovic, P. (2014), "Hydro-abrasive resistance and mechanical properties of rubberized concrete", J. Croatian Assoc. Civil Engr., 66(01.), 11-20. https://doi.org/10.14256/jce.910.2013
  25. Gregori, A., Castoro, C., Marano, G.C. and Greco, R. (2019), "Strength reduction factor of concrete with recycled rubber aggregates from tires", J. Mater. Civil Eng., 31(8), 04019146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002783
  26. Grinys, A., Sivilevicius, H. and Dauksys, M. (2012), "Tyre rubber additive effect on concrete mixture strength", J. Civil Eng., 18(3), 393-401. Manage. https://doi.org/10.3846/13923730.2012.693536
  27. Guneyisi, E., Gesoglu, M. and Ozturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005
  28. Gupta, T., Chaudhary, S. and Sharma, R.K. (2016), "Mechanical and durability properties of waste rubber fiber concrete with and without silica fume", J. Cleaner Product., 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081
  29. Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Measurement, 147, 106870. https://doi.org/10.1016/j.measurement.2019.106870
  30. Hadzima-Nyarko, M., Nyarko, E.K., Ademovic, N., Milicevic, I. and Sipos, T.K. (2019), "Modelling the influence of waste rubber on compressive strength of concrete by artificial neural networks", Materials, 12(4), 561. https://doi.org/10.3390/ma12040561
  31. Hossain, F.M.Z., Shahjalal, M., Islam, K., Tiznobaik, M. and Alam, M.S. (2019), "Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber", Constr. Build. Mater., 225, 983-996. https://doi.org/10.1016/j.conbuildmat.2019.07.245
  32. Iqbal, M.F., Liu, Q. feng, Azim, I., Zhu, X., Yang, J., Javed, M.F. and Rauf, M. (2020), "Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming", J. Hazard. Mater., 384, 121322. https://doi.org/10.1016/j.jhazmat.2019.121322
  33. Jalal, M., Arabali, P., Grasley, Z., Bullard, J.W. and Jalal, H. (2020a), "Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete", J. Cleaner Product., 273, 122960. https://doi.org/10.1016/j.jclepro.2020.122960
  34. Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020b), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478
  35. Kandiri, A., Golafshani, E.M. and Behnood, A. (2020), "Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm", Constr. Build. Mater., 248, 118676. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118676
  36. Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015
  37. Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)
  38. Li, H.L., Xu, Y., Chen, P.Y., Ge, J.J. and Wu, F. (2019), "Impact energy consumption of high-volume rubber concrete with silica fume", Adv. Civil Eng. https://doi.org/10.1155/2019/1728762
  39. Loh, W.Y. (2011), "Classification and regression trees", Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov., 1(1), 14-23. https://doi.org/10.1002/widm.8
  40. Mendis, A.S.M., Al-Deen, S. and Ashraf, M. (2017), "Behaviour of similar strength crumbed rubber concrete (CRC) mixes with different mix proportions", Constr. Build. Mater., 134, 354-366. https://doi.org/10.1016/j.conbuildmat.2017.01.125
  41. Mohammadi, I., Khabbaz, H. and Vessalas, K. (2014), "In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements", Constr. Build. Mater., 71, 456-471. https://doi.org/10.1016/j.conbuildmat.2014.08.085
  42. Mohammed, B.S. and Azmi, N.J. (2014), "Strength reduction factors for structural rubbercrete", Front. Struct. Civil Eng., 8(3), 270-281. https://doi.org/10.1007/s11709-014-0265-7
  43. Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Software, 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014
  44. Nazari, A. and Torgal, F.P. (2013), "Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP", Expert Syst. Applicat., 40(14), 5427-5438. https://doi.org/10.1016/j.eswa.2013.04.014
  45. Nekoei, M., Moghaddas, S.A., Golafshani, E.M. and Gandomi, A.H. (2021), "Introduction of ABCEP as an automatic programming method", Inform. Sci., 545, 575-594. https://doi.org/10.1016/j.ins.2020.09.020
  46. Nielsen, M.P. and Hoang, L.C. (2016), Limit Analysis and Concrete Plasticity, (3rd edition).
  47. Noaman, A.T., Abu Bakar, B.H., Akil, H.M. and Alani, A.H. (2017), "Fracture characteristics of plain and steel fibre reinforced rubberized concrete", Constr. Build. Mater., 152, 414-423. https://doi.org/10.1016/j.conbuildmat.2017.06.127
  48. Ozbay, E., Lachemi, M. and Sevim, U.K. (2011), "Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag", Mater. Struct./Materiaux et Constructions, 44(7), 1297-1307. https://doi.org/10.1617/s11527-010-9701-x
  49. Quinlan, J.R. (1992), "Learning with continuous classes: Constructing Model Trees", Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, Australia, November. https://doi.org/10.1.1.34.885
  50. Rashid, K., Yazdanbakhsh, A. and Rehman, M.U. (2019), "Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material", J. Cleaner Product., 224, 396-410. https://doi.org/10.1016/j.jclepro.2019.03.197
  51. Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640)
  52. Roychand, R., Gravina, R.J., Zhuge, Y., Ma, X., Youssf, O. and Mills, J.E. (2020), "A comprehensive review on the mechanical properties of waste tire rubber concrete", Constr. Build. Mater., 237, 117651. https://doi.org/10.1016/j.conbuildmat.2019.117651
  53. Shahmansouri, A.A., Akbarzadeh Bengar, H. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326
  54. Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108
  55. Stallings, K.A., Durham, S.A. and Chorzepa, M.G. (2019), "Effect of cement content and recycled rubber particle size on the performance of rubber-modified concrete", Int. J. Sustain. Eng., 12(3), 189-200. https://doi.org/10.1080/19397038.2018.1505971
  56. Sukontasukkul, P. and Tiamlom, K. (2012), "Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size", Constr. Build. Mater., 29, 520-526. https://doi.org/10.1016/j.conbuildmat.2011.07.032
  57. Tahwia, A.M., Heniegal, A., Elgamal, M.S. and Tayeh, B.A. (2021), "The prediction of compressive strength and nondestructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, Int. J., 27(1), 21-28. https://doi.org/10.12989/cac.2021.27.1.021
  58. Thomas, B.S. and Gupta, R.C. (2015), "Long term behaviour of cement concrete containing discarded tire rubber", J. Cleaner Product., 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072
  59. Thomas, B.S. and Gupta, R.C. (2016), "Properties of high strength concrete containing scrap tire rubber", J. Cleaner Product., 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019
  60. Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", Constr. Build. Mater., 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074
  61. Thomas, B.S., Kumar, S., Mehra, P., Gupta, R.C., Joseph, M. and Csetenyi, L.J. (2016), "Abrasion resistance of sustainable green concrete containing waste tire rubber particles", Constr. Build. Mater., 124, 906-909. https://doi.org/10.1016/j.conbuildmat.2016.07.110
  62. Toma, I.O., Taranu, N., Banu, O.M., Budescu, M., Mihai, P. and Taran, R.G. (2015), "The effect of the aggregate replacement by waste tyre rubber crumbs on the mechanical properties of concrete", Revista Romana de Materiale/Roman. J. Mater., 45(4), 394-401.
  63. Wang, J., Dai, Q., Guo, S. and Si, R. (2019), "Study on rubberized concrete reinforced with different fibers", ACI Mater. J., 116(2). https://doi.org/10.14359/51712266
  64. Wong, S.F. and Ting, S.K. (2009), "Use of recycled rubber tires in normaland high-strength concretes", ACI Mater. J., 106(4), 325. https://doi.org/10.14359/56652
  65. Xie, Y., Su, X.R., Wang, H.X., Luo, D.M. and Zhou, Y.L. (2019), "Experimental analysis of the toughness mechanism of rubber concrete", In: IOP Conference Series: Materials Science and Engineering, Vol. 504, No. 1, p. 012041. https://doi.org/10.1088/1757-899X/504/1/012041
  66. Youssf, O., Elgawady, M.A., Mills, J.E. and Ma, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007
  67. Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2017), "Analytical modeling of the main characteristics of crumb rubber concrete", Am. Concrete Inst., ACI Special Publication, 314, 1-18.
  68. Zhang, Z., Paul, S.C., Panda, B., Huang, Y., Garg, A., Zhang, Y., Garg, A. and Zhang, W. (2020), "Assessment of flexural and splitting strength of steel fiber reinforced concrete using automated neural network search", Adv. Concrete Constr., Int. J., 10(1), 81-92. https://doi.org/10.12989/acc.2020.10.1.081.