DOI QR코드

DOI QR Code

HESITANT FUZZY PARAOPEN AND HESITANT FUZZY MEAN OPEN SETS

  • SWAMINATHAN, A. (Department of Mathematics, Government Arts College(Autonomous)) ;
  • SIVARAJA, S. (Research Scholar, Department of Mathematics, Annamalai University)
  • Received : 2022.03.30
  • Accepted : 2022.05.27
  • Published : 2022.07.30

Abstract

The aim of this article is to introduce hesitant fuzzy paraopen and hesitant fuzzy mean open sets in hesitant fuzzy topological spaces. Moreover we investigate and extend some properties of hesitant fuzzy mean open with hesitant fuzzy paraopen, hesitant fuzzy minmimal open and maximal open sets in hesitant fuzzy topological spaces.

Keywords

References

  1. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. https://doi.org/10.1016/0022-247x(68)90057-7
  2. D. Deepak, B. Mathew, S. Mohn and H.A. Garg, Topological structure involving hesitant fuzzy sets, M. Intell. Fuzzy Syst. 36 (2019), 6401-6412. https://doi.org/10.3233/JIFS-182673
  3. D. Divakaran and S.J. John, Hesitant fuzzy rough sets through hesitant fuzzy relations, Ann. Fuzzy Math. Inform. 8 (2014), 33-46.
  4. J. Kim, Y.B. Jun, P.K. Lim, J.G. Lee and K. Hur, The category of hesitant H-fuzzy sets, Ann. Fuzzy Math. Inform. 18 (2019), 57-74. https://doi.org/10.30948/afmi.2019.18.1.57
  5. J.G. Lee and K. Hur, Hesitant fuzzy topological spaces, Mathematics 8 (2020), 188. https://doi.org/10.3390/math8020188
  6. A. Swaminathan, Fuzzy mean open and fuzzy mean closed sets, J. Appl. Math. and Informatics 38 (2020), 463-468. https://doi.org/10.14317/JAMI.2020.463
  7. A. Swaminathan and S. Sivaraja, Hesitant fuzzy minimal and maximal open sets, accepted in Creative Mathematics and Informatics.
  8. V. Torra, Hesitant fuzzy sets, Int. J. Intel. Sys. 25 (2010), 529-539. https://doi.org/10.1002/int.20418
  9. L.A. Zadeh, Fuzzy sets, Information and control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X