DOI QR코드

DOI QR Code

냉장고 수축팽창 소음의 발생기구에 대한 실험적 규명

An experimental investigation into the mechanism of the refrigerator contraction-expansion noise

  • 이영규 (계명대학교 기계공학과) ;
  • 김원진 (계명대학교 진동소음연구실)
  • 투고 : 2022.03.23
  • 심사 : 2022.05.26
  • 발행 : 2022.07.31

초록

본 논문은 냉장고 수축팽창 소음의 원인 및 메커니즘을 파악하고 소음 감소 방법을 제안한다. 냉장고에서 발생하는 수축팽창 소음은 주로 내부부품 사이의 접촉면에서 발생하는 스틱슬립 현상에 의한 것이다. 스틱슬립 현상을 일으키는 요인을 규명하기 위해 마찰실험이 수행되었다. 또한 내부부품의 진동레벨을 측정하여 수축팽창 소음의 특성 및 위치를 규명하였다. 실험 결과를 바탕으로 요인별 소음 특성을 검증하는 실험이 진행되었다. 이를 통해 마찰실험과 냉장고 수축팽창 소음 발생 위치와 빈도가 동일한 것을 확인하였다. 하중적재로 수직력이 증가하면 진동레벨도 증가하였다. 또한 표면거칠기를 증가하였을 때 수축팽창 소음이 저감되는 것으로 확인되었다. 따라서, 마찰실험 결과와 동일하게 접촉면의 표면거칠기를 증가하는 것이 수축팽창 소음저감 방법이라는 결론을 도출하였다.

This paper aims to identify the causes and mechanisms of contraction-expansion noise in refrigerators and proposes noise reduction methods. Contraction-expansion noise generated in refrigerators is mainly due to stick-slip phenomenon occurring on the contact surface between inner parts. Friction experiments were conducted to identify the factors causing the stick-slip phenomenon. Furthermore, the vibration level of the internal components was measured to determine the characteristics and location of the contraction-expansion noise. Based on the experimental results, experiments have been conducted to verify the noise characteristics for each factor. From this, it was confirmed that the friction experiment and the refrigerator contraction-expansion noise generation location and frequency were the same. The vibration level also increased as the vertical force was increased due to load loading. Also, it was confirmed that the contraction-expansion noise was reduced when the surface roughness was increased. Therefore, it was concluded that increasing the surface roughness of the contact surface in the same way as the results of the friction experiment was the method of reducing contraction-expansion noise.

키워드

참고문헌

  1. W. Kim, W. H. Jeon, Y. G Jung, and C. J. Kim, "A numerical study on low noise refrigerator fans" (in Korean), Proc. the KFMA Annual Meeting, 489-495 (2003).
  2. S. H. Seo, T. H. Kawk, C. J. Kim, J. K. Park, and K. S. Cho, "Noise and vibration reduction of a household refrigerator" (in Korean), Proc. the SAREK, 1133-1137 (2000).
  3. S. K. Park, A study on identification and reduction of refrigerator contraction & expansion noise, (MS. Thesis, University of Keimyung, 2012).
  4. D. G. Lee, H. J. Park, and S. H. Park, "Experimental study on friction characteristics between sliding polymer plates for reduction of stick-and-slip abnormal noise" (in Korean), Polym. Korea, 37, 642-648 (2013). https://doi.org/10.7317/pk.2013.37.5.642
  5. J. H. Pyo, Reduction of Frictional Impulse Noise Induced by Thermomechanical Deformations in TV Sets, (in Korean), (MS. thesis, University of KAIST, 2004).
  6. D. B. Alan, A. D. Wiliam, and N. I. Jacob, "Origin and characterization of different stick-slip friction mechanisms," Langmuir 12, 4559-4563 (1966). https://doi.org/10.1021/la950896z
  7. T. Baumberger, F. Heslot, and B. Perrin, "Crossover from creep to inertial motion in friction dynamics," Nature, 367, 544-545 (1994). https://doi.org/10.1038/367544a0
  8. P. Berthoud, T. Baumberger, C. Sell, and J. M. Hiver, "Physical analysis of the state- and rate-dependent friction law: static friction," Physical Review B, 59, 14313-14317 (1999). https://doi.org/10.1103/PhysRevB.59.14313
  9. S. Bouissou, J. P. Petit, and M. Barquins, "Stress drop and contact stiffness measured from stick-slip experiments on PMMA-PMMA Friction," Tribology Letters, 7, 61-65 (1999). https://doi.org/10.1023/A:1019152832763
  10. D. I. Park, A study on correlation between noise caused by stick-slip and friction characteristics, (in Korean), (MS. thesis, University of KAIST, 2005).
  11. G. S. Kim and J. H. Yoon, "A study on identification and improvement of adhesive quality using adhesive theory at micro/nano scale contact" (in Korean), J. IEIE, 44, 133-141 (2007).