DOI QR코드

DOI QR Code

A Study on the Integrated Approach Methodology for Evaluating the Performance of the Cloud-based AIS - Comparative study of Korea and the US

클라우드 기반의 AIS시스템 성과평가를 위한 통합적 접근방법론에 관한 실증적 연구-한미 양국 비교연구

  • Kim, Dong-Il (Dept. of Business Administration, Pusan National University)
  • Received : 2022.06.28
  • Accepted : 2022.07.20
  • Published : 2022.07.28

Abstract

In this study, This study focuses on exploring the major factors influencing the successful introduction of the cloud-based accounting information system, which is the top priority in the field of corporate digital transformation. Therefore, theories were summarized based on the company's cloud environment and related prior research, and the major performance factors of the company were analyzed by dividing them into organizational factors, business operation factors, and technical system factors. Considering that the cloud-based accounting information system is in the early stages of its introduction, the research analysis method ranks major success factors according to their importance using the Delphi targeting the expert panel, through the AHP method, the major performance variables were finally explored through the mutual importance analysis of each major factor. As a result of the analysis, organizational factors were analyzed as corporate sustainability, business operational factors were the business solutions, and system scalability factors were analyzed. This study will be able to provide additional useful information on the initial introduction strategy and operation for the introduction and operation of the cloud-based accounting information system.

본 연구는 기업의 디지털트랜스포메이션(digital transformation) 분야에서 가장 우선하는 클라우드 기반 회계정보시스템의 성공적 도입에 영향을 미치는 주요 요인을 탐색하는데 그 주안점을 두고 있다. 따라서 기업의 클라우드 현황과 관련 선행연구를 토대로 이론을 종합하였으며, 기업의 주요 성과 요인을 조직적 요인과, 비즈니스 업무 영역, 그리고 기술적 시스템 요인으로 구분하여 조사 분석하였다. 연구분석 방법은 클라우드 기반 회계정보시스템이 도입 초기인 점을 고려하여 전문가 패널을 대상으로 델파이(delphi method)분석 기법을 통해 주요 성공 요인을 중요도에 따라 순위를 정하고, 계층적분석(AHP)방법을 통해 각 주요 요인별 상호 중요도 분석을 통해 최종적으로 주요 성과변수를 탐색하였다. 분석결과 조직적 요인으로는 기업의 지속성과, 기업 운영적 요인은 비니니스 업무 솔루션, 그리고 시스템 확성성 요인으로 분석 되었다. 본 연구는 향후 많은 기업들이 주목하고 있는 클라우드 기반 회계정보시스템의 도입과 운영에 대한 초기 도입 전략과 운영에 추가적인 유용한 정보를 제공할 수 있을 것이다.

Keywords

Acknowledgement

This work was supported by the Financial Supporting Project of Long-term Overseas Dispatch of PNU's Tenure-track Faculty, 2019.

References

  1. S. Gupta, R. Meissonierb, V. A. Dravec & D. Roubauda. (2020). Examining the impact of Cloud ERP on sustainable performance: A dynamic capability view. International Journal of Information Management, 51, 1-13. DOI : 10.1016/j.ijinfomgt.2019.10.013
  2. M. A. Elmonem, E. S. Nasr & M. H. Geith. (2016). Benefits and challenges of cloud ERP systems e A systematic literature review. Future Computing and Informatics Journal, 1, 1-9. https://doi.org/10.1016/j.fcij.2017.03.003
  3. S. H. Kim & S. S. Kim. (2020). Current State of New Technology (AI, Cloud)-based Enterprise Solutions and Overseas Expansion Strategy. Information and Communication Industry Promotion Agency, Issue Report, No. 15.
  4. C. S. Chena, W. Y. Liang & H. Y. Hsub. (2015). A cloud computing platform for ERP applications. Applied soft computing, 27, 127-136. DOI : 10.1016/j.asoc.2014.11.009
  5. M. Hadidi, M. Al. Rashdan, S. Hadedi & Y. Soubhi. (2020). Comparison between Cloud ERP AND Traditional ERP. Journal of Critical Reviews, 7(3), 22-29. DOI : 10.31838/jcr.07.03.26
  6. F. M. Elbahri, O. A. Sanjary, A. M. Ali & Z. A. Naif. (2019). Difference Comparison of SAP, Oracle, and Microsoft Solutions Based on Cloud ERP Systems: A Review. IEEE 15th International Colloquium on Signal Processing & its Applications, 65-70.
  7. S. Gupta & S. C. Misra. (2016). Moderating Effect of Compliance, Network, and Security on the Critical Success Factors in the Implementation of Cloud ERP. IEEE Transactions on Cloud Computing, 4(4), 440-451. DOI : 10.1109/TCC.2016.2617365
  8. M. Parhizkar & M. Comuzzi. (2015). An AHP-Based analysis of the cost of ERP Modification Minou Parhizkar Centre for Adaptive Computing Systems. IEEE Computer Society, 200-205.
  9. D. Varona & L. F. Capret. (2021). Using the DELPHI Method for Model for Role Assignment in the Software Industry. IECON, 1-7.
  10. H. Etemad, C. Gurau & L. Paul. Dana. (2022). International entrepreneurship research agendas evolving: A longitudinal study using the Delphi method. Journal of International Entrepreneurship, 20, 29-51. https://doi.org/10.1007/s10843-021-00292-w
  11. D. Sever. (2021). Program Evaluation Experts' Competencies: A Delphi Study. International Journal of Contemporary Educational Research, 8(2), 131-142. DOI : 10.33200/ijcer.854511
  12. P. Goor, G. E. Kerr & S. J. Myun. (2022). How Has the Digital Environment Affected Advertising Creativity? Digital's Impact on the Creative Process, Person, and Product: A Delphi Study. Journal of Advertising Research, 118-130. https://doi.org/10.2501/JAR-52-1-118-127
  13. C. H. Lawshe. (1975). A Quantitative Approach to Content Validity Personnel. Psychology, 28(4), 563-575.
  14. T. L. Saaty. (1980). The Analytic Hierarchy Process, McGraw-Hill Inc, New York.
  15. R. W. Saaty. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling. 9, Issues(3-5), 161-176. https://doi.org/10.1016/0270-0255(87)90473-8
  16. G. Rowe & G. Wright. (2001). Expert opinions in forecasting: The role of the Delphi technique. Principles of Forecasting, Springer, 12(4), 125-144.
  17. T. L. Saaty. (1990). The Analytic Hierarchy Process. RWS Publication, Pittsburgh, PA.
  18. Z. Ayag & F. Samanlioglu. (2021). A hesitant fuzzy linguistic terms set-based AHP-TOPSIS approach to evaluate ERP software packages. International Journal of Intelligent Computing and Cybernetics, (1), 54-77.
  19. Y. K. Dwivedi, M. Janssen, E. L. Slade, N. P. Rana, V. Weerakkody, J. Millard & D. Snijders. (2017). Driving innovation through big open linked data (BOLD): Exploring antecedents using interpretive structural modelling. Information Systems Frontiers, 19, 197-212. https://doi.org/10.1007/s10796-016-9675-5
  20. S. Gupta, S. Kumar, S. K. Singh, C. Foropon & C. Chandra. (2018). Role of cloud ERP on he performance of an organization. The International Journal of Logistics Management, 29(2), 659-675. DOI : 10.1108/IJLM-07-2017-0192
  21. M. L. Song, R. Fisher, J. L. Wang & L. B. Cui. (2018). Environmental performance evaluation with big data: Theories and methods. Annals of Operations Research, 270(1-2), 459-472. https://doi.org/10.1007/s10479-016-2158-8
  22. R. Dubey, A. Gunasekaran, S. J. Childe, T. Papadopoulos, Z. Luo, S. F. Wamba & D. Roubaud. (2019). Can big data and predictive analytics improve social and environmental sustainability?. Technological Forecasting and Social Change, 144(Apr.), 534-545. https://doi.org/10.1016/j.techfore.2017.06.020
  23. A. Pabedinskaite. (2010). Factors of successful implementation of ERP systems. Economic Management, 15, 691-697.
  24. S. Ellis. (2010). Software-as-a-Service ERP versus on-premises ERP through the lens of total cost of ownership, Flex Systems, White Paper, 1-50.
  25. M. Handid, M. Al. Rashdan, S. Hadedi & Y. Soubhi. (2020). Comparison between Cloud ERP and Traditional ERP. Journal of Critical Reviews, 7(3), 234-239.
  26. M. Amalnick, A. Ansarinejad, S. Ansarinejad & L. H. Shirkouhi. (2010). A Group Decision Making Approach for Evaluation of ERP Critical Success Factors Using Fuzzy AHP. IEEE Computer Society, 212-217.
  27. Q. Dewei & Z. Zongqian. (2012). The Knowledge-transfer Risk Evaluation Model of the Execution of ERP Project Based on AHP. Fifth International Conference on Business Intelligence and Financial Engineering, 636-640,
  28. Z. Shao. (2019). Interaction effect of strategic leadership behaviors and organizational culture on IS-Business strategic alignment and Enterprise Systems assimilation. International Journal of Information Management, 44(2), 96-108. https://doi.org/10.1016/j.ijinfomgt.2018.09.010
  29. O. Francoise. (2009). ERP implementation through critical success factors management. Journal of Business Process Management, 15(3), 20-29. https://doi.org/10.1108/14637150910960620
  30. U. Remus. (2007). Critical success factors for implementing enterprise portals: A comparison with ERP implementations. Journal of Business Process Management, 13(4), 538-552. https://doi.org/10.1108/14637150710763568
  31. Y. Duan, J. S. Edwards & Y. K. Dwivedi. (2019). Artificial intelligence for decision making in the era of Big Data - Evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
  32. T. Chandrakumar & S. Parthasarathy. (2014). A framework for evaluating Cloud Enterprise Resource planning (ERP) systems, Continued rise of the Cloud: Advances and trends in Cloud computing. Springer, 161-175.
  33. O. Alaskari, M. M. Ahmad, N. Dhafr & R. Pinedo-Cuenca. (2012). Critical successful factors(CSFs) for successful implementation of lean tools and ERP systems. in Process World Congrrsion England.
  34. V. Kumar, B. Maheshwari & U. Kumar. (2002). ERP systems implementation: Best practices in Canadian government organizations. Government Information Quarterly, 19, 147-172. https://doi.org/10.1016/S0740-624X(02)00092-8
  35. I. Saeed, G. Juell-Skielse & E. Uppstrom. (2020). Cloud enterprise resource planning adoption: Motives and barriers. Advertising Enterprise Information System, 2, 429-434.
  36. C. Utzig, D. Holland, M Horvath & M. Manohar. (2013). ERP in the Cloud: Is it Ready? are You?, New York, USA: Booz and Co., Books.