Acknowledgement
본 연구는 보건복지부의 재원으로 한국보건산업진흥원의 보건의료기술 연구개발사업 (HI18C1216), 그리고 한국연구재단(NRF-2021R1A5A8029876) (NRF-2020R1I1A1A01074256)의 지원으로 수행함.
References
- Andrew Ng: MLOps: "From Model-centric to Data-centric AI," [Internet], https://www.deeplearning.ai/wp-content/uploads/2021/06/MLOps-From-Model-centric-to-Data-centric-AI.pdf.
- Y. Bai, et al., "How important is the train-validation split in meta-learning?" arXiv preprint arXiv:2010.05843, 2020.
- A. Racz, D. Bajusz, and K. Heberger, "Effect of dataset size and Train/Test split ratios in QSAR/QSPR multiclass classification," Molecules, Vol.26, No.4, pp.1111, 2021. https://doi.org/10.3390/molecules26041111
- M. Motamedi, N. Sakharnykh, and T. Kaldewey, "A datacentric approach for training deep neural networks with less data," arXiv preprint arXiv:2110.03613, 2021.
- J. D. Bosser, E. Sorstadius, and M. H. Chehreghani, "Modelcentric and data-centric aspects of active learning for neural network models," arXiv preprint arXiv:2009.10835, 2020.
- Cognilytica, "Data engineering, preparation, and labeling for AI 2019," [Internet], https://www.cognilytica.com/2019/03/06/report-data-engineering-preparation-and-abeling-for-ai-2019/.
- Y. Roh, G. Heo, and S. E. Whang, "A survey on data collection for machine learning: A big data-ai integration perspective," in IEEE Transactions on Knowledge and Data Engineering, Vol.33, No.4, pp.1328-1347, 2021, doi: 10.1109/TKDE.2019.2946162.
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol.521, pp.436-444, 2015. https://doi.org/10.1038/nature14539
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, Vol.86, No.11, pp.2278-2324, 1998. https://doi.org/10.1109/5.726791
- A. Krizhevsky, "Learning multiple layers of features from tiny images," [Internet], https://www.cs.toronto.edu/~kriz/cifar.html, 2009.
- M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The PASCAL Visual Object Classes (VOC) Challenge," International Journal of Computer Vision, Vol.88, pp.303-338, 2010. https://doi.org/10.1007/s11263-009-0275-4
- T. Y. Lin, et al., "Microsoft COCO: Common objects in context," In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision ? ECCV 2014. Lecture Notes in Computer Science, Vol.8693. Springer, Cham, doi: 10.1007/978-3-319-10602-1_48
- J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fe, "Imagenet: A large-scale hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.248-255, 2009.
- Google's Open Images V6 + Extentions [Internet], https://storage.googleapis.com/openimages/web/index.html.
- Center for Artificial Intelligence in Medicine & Imaging [Internet], https://aimi.stanford.edu/.
- AI Hub [Internet], https://aihub.or.kr/.
- Pathology AI Platform, [Internet], http://wisepaip.org/.
- Morphometry Open AI Innovation [Internet], http://www.wonmoai.org/.
- A. D. Weston, et al., "Automated abdominal segmentation of CT scans for body composition analysis using deep learning," Radiology, Vol.290, No.3, pp.669-679, 2019. doi: 10.1148/radiol.2018181432.
- C. T. Rueden, et al., "ImageJ2: ImageJ for the next generation of scientific image data," BMC Bioinformatics, Vol.18, No.529, 2017. doi: 10.1186/s12859-017-1934-z.
- R. Kikinis, S. D. Pieper, and K. G. Vosburgh, "3D Slicer: A platform for subject-specific image analysis, visualization, and clinical support," In: Jolesz, F. (eds.) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. doi: 10.1007/978-1-4614-7657-3_19.
- M. N. Rizve, K., Duarte, Y. S., Rawat, and M. Shah, "In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning," arXiv preprint arXiv:2101.06329, 2021.
- S. Kim, T. H. Kim, C. W. Jeong, C. Lee, S. Noh, J. E. Kim, and K. H. Yoon, "Development of quantification software for evaluating body composition contents and its clinical application in sarcopenic obesity," Scientific Reports, Vol.10, No.10452, 2020. doi: 10.1038/s41598- 020-67461-0.
- Histogram Backprojection [Internet], https://docs.opencv.org/3.4/dc/df6/tutorial_py_histogram_backprojection.html.
- GrabCut [Internet], https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html.
- E. H. Kim, et al., "Reference data and t-scores of lumbar skeletal muscle area and its skeletal muscle indices measured by CT scan in a healthy Korean population," The Journals of Gerontology: Series A, Vol.76, No.2, pp.265-271, 2021. doi: 10.1093/gerona/glaa065.