Acknowledgement
이 논문은 2018년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2018R1A2B6009620).
References
- "Cyber Threat Prospects for 2021", KISA, Jan. 26, 2021 [Internet], https://krcert.or.kr/data/reportView.do?bulletin_writing_sequence=35878.
- C. Beek, et al., 2021 McAfee Threats report [Internet], https://www.mcafee.com/enterprise/en-us/lp/threats-reports/jun-2021.html.
- Press Release, WatchGuard, Jun. 24, 2021 [Internet], https://www.atchguard.com/wgrd-news/press-releases/new-watchguard-research-reveals-traditional-anti-malware-solutions-miss.
- L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, "Malware images: Visualization and automatic classification," Proceedings of the 8th International Symposium on Visualization for Cyber Security, No.4, pp.1-7, 2011.
- H. Kim and M. Kim, "Image-based malware classification system using image preprocessing and ensemble techniques," Proceedings of the Korea Information Processing Society Conference. Korea Information Processing Society, pp.715-718, 2021.
- M. Sahin and S. Bahtiyar, "A survey on malware detection with deep learning," 13th International Conference on Security of Information and Networks, No.34, pp.1-6, 2020.
- S. Kim, D. Kim, H. Lee, and T. Lee, "A study on classification of CNN-based linux malware using image processing techniques," Journal of the Korea Academia-Industrial cooperation Society, Vol.21, No.9, pp.634-642, 2020.
- S. Yue, "Imbalanced malware images classification: A CNN based approach," arXiv preprint arXiv:1708.08042, 2017.
- T. Ojala, M. Pietikainen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern Recognition, Vol.29, No.1, pp.51-59, 1996. https://doi.org/10.1016/0031-3203(95)00067-4
- N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," International Conference on Computer Vision & Pattern Recognition (CVPR), San Diego, UnitedStates, pp.886-893, 2005.
- K. O'Shea and R. Nash, "An introduction to convolutional neural networks," arXiv preprint arXiv:1511.08458, 2015.
- S. Hochreiter and J. Schmidhuber, "LONG SHORT-TERM MEMORY," Neural Computation, Vol.9, No.8, pp.1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
- R. O'Brien and H. Ishwaran, "A random forests quantile classifier for class imbalanced data," Pattern Recognition, Vol.90, pp.232-249, 2019. https://doi.org/10.1016/j.patcog.2019.01.036
- F. Provost, "Machine learning from imbalanced data sets 101," Proceedings of the AAAI 2000 Workshop on Imbalanced Data Sets, pp.1-3, 2000.
- R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, "Microsoft malware classification challenge," arXiv preprint arXiv:1802.10135, 2018.