DOI QR코드

DOI QR Code

Effects of High-Molecular-Weight Glutenin Subunits and Agronomic Traits on Bread Wheat Quality Parameters

밀의 고분자 글루테닌 조성과 농업 형질이 품질 특성에 미치는 영향

  • 차진경 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 신동진 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 박현진 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 권영호 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 이소명 (농촌진흥청 국립식량과학원 논이용작물과) ;
  • 고종민 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 이종희 (농촌진흥청 국립식량과학원 논이용작물과)
  • Received : 2022.03.22
  • Accepted : 2022.05.16
  • Published : 2022.06.01

Abstract

Improving flour quality is one of the major targets of wheat breeding programs. This study determined the optimum high-molecular-weight glutenin subunits (HMW-GS) to improve flour quality, and analyzed the correlation between agronomic and quality traits in Korea. A total of 180 wheat varieties, including 55 Korean and 125 foreign cultivars, carrying various Glu-1 alleles, were evaluated for their quality and agronomic traits. Results indicated that Glu-A1b, Glu-B1b, and Glu-D1f were the most prevailing alleles for each Glu-1 locus for Korean wheat cultivars. Korean wheat cultivars recorded shorter days to heading (DTH) and longer days to maturity (DTM) compared to foreign cultivars. In addition, an interaction effect was found between Glu-A1 and Glu-B1 alleles on several quality parameters. The combination of Glu-A1c and Glu-B1i showed a higher protein content, dry gluten content, and higher sodium dodecyl sulfate (SDS) sedimentation value than other Glu-A1×Glu-B1 combinations. Cultivars carrying Glu-A1a or Glu-A1b, Glu-B1i or Glu-B1al, and Glu-D1d for each Glu-1 locus exhibited a longer mixing time and stronger mixing tolerance. The DTM positively correlated with the protein content, gluten index and SDS sedimentation value. However, a negative correlation was observed between DTH and quality traits. Owing to the above results, this study suggests that an increase in the frequency of Glu-B1i or Glu-B1al, Glu-D1d coupled with a short DTH and long DTM could significantly improve wheat quality properties.

국내외 유전자원을 이용하여 HMW-GS 조성과 농업 특성이 밀가루 품질에 미치는 영향을 평가하였다. 1. 국내 자원의 HMW-GS 조성은 Glu-A1c와 Glu-A1b, Glu-B1b, Glu-D1f가 가장 많았고, Glu-B1i 또는 Glu-B1al을 가진 자원은 각 1개로 적었다. 외국 자원은 각 loci 별로 Glu-A1a, Glu-B1c, Glu-D1d가 가장 많았고, Glu-B1에서는 Glu-B1i가 두번째로 많았다. 2. 국내자원은 도입자원에 비해 출수일수가 짧고 성숙일수가 길며, 글루텐 인덱스, 믹소그래프 반죽 강도(MPV 및 MPW)가 높은 반면, Glu-1 점수와 반죽시간, 반죽 안정성(MTxW)이 낮았다. 3. HMW-GS 조성과 품질 특성 간 관계를 분석한 결과 단백질 함량과 글루텐 함량은 Glu-B1i에서 가장 높았다. 글루텐 인덱스, 침전가, 믹소그래프 반죽시간, 반죽 안정성(MTxW)은 모두 공통적으로 Glu-B1의 Glu-B1i와 Glu-B1al에서 높게 나타났다. 반죽시간과 반죽 안정성(MTxW)은 Glu-A1a와 Glu-A1b, Glu-D1d에서도 높았다. 4. 농업 형질과 품질 특성의 상관관계를 분석한 결과 단백질 함량, 글루텐 인덱스, 침전가, 반죽 강도(MPV 및 MPW)는 공통적으로 출수일수와는 부의 상관, 성숙일수와는 정의 상관을 나타내었다. 이를 통해 국내 자원의 빠른 출수기와 충분한 성숙일수를 유지하면서 도입 자원이 가진 Glu-B1i, Glu-B1al, Glu-D1d 등의 유용한 HMW-GS 조성을 도입하면 고품질 밀 품종을 육성하는 데 도움이 될 것으로 생각된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(세부과제명: 밀 고분자 글루테닌의 유전적 조성과 품질 연관성 구명, 세부과제번호: PJ013564022020)의 지원에 의해 이루어진 것임

References

  1. AACCI. 2010. Approved methods of analysis. 11th ed. AACC International, St. Paul, MN, USA. Method 38-12.02, 44-15-02, 46-30.01, 54-40.02.
  2. Abdipour, M., M. Ebrahimi, A. Izadi-Darbandi, A. M. Mastrangelo, G. Najafian, Y. Arshad, and G. Mirniyam. 2016. Association between grain size and shape and quality traits, and path analysis of thousand grain weight in Iranian bread wheat landraces from different geographic regions. Not Bot Horti Agrobo. 44(1) : 228-236. https://doi.org/10.15835/nbha44110256
  3. Axford, D. W. E., E. E. McDermott, and D. G. Redman. 1979. Note on the sodium dodecylsulfate test of bread making quality: Comparison with Pelshenke and Zeleny tests. Ceral Chem. 56 : 582-584.
  4. Aydin, N., C. Sermet, Z. Mut, H. O. Bayramoglu, and H. Ozcan. 2010. Path analyses of yield and some agronomic and quality traits of bread wheat (Triticum aestivum L.) under different environments. Afr. j. biotechnol. 9(32) : 5131-5134.
  5. Branlard, G., M. Dardevet, R. Saccomano, F. Lagoutte, and J. Gourdon. 2001. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica. 119: 59-67. https://doi.org/10.1023/A:1017586220359
  6. Bordes, J., G. Branlard, F. X. Oury, G. Charmet, and F. Balfourier. 2008. Agronomic characteristics, grain quality and flour rheology of 372 bread wheats in a worldwide core collection. J. Cereal Sci. 48(3) : 569-579. https://doi.org/10.1016/j.jcs.2008.05.005
  7. Carter, A. H., D. K. Santra, and K. K. Kidwell. 2012. Assessment of the effects of the Gpc-B1 allele on senescence rate, grain protein concentration and mineral content in hard red spring wheat (Triticum aestivum L.) from the Pacific northwest region of the USA. Plant breed. 131(1) : 62-68. https://doi.org/10.1111/j.1439-0523.2011.01900.x
  8. Costa, M. S., M. B. D. S. Scholz, and C. M. L. Franco. 2013. Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes. Food Sci. Technol. 33 : 163-170. https://doi.org/10.1590/S0101-20612013000500024
  9. Dessalegn, T., C. S. Van Deventer, M. T. Labuschagne, and H. Martens. 2011. Allelic variation of HMW glutenin subunits of Ethiopian bread wheat cultivars and their quality. Afr. Crop. Sci. J. 19(2) : 55-63.
  10. Gao, S., G. Sun, W. Liu, D. Sun, Y. Peng, and X. Ren. 2020. High-molecular-weight glutenin subunit compositions in current Chinese commercial wheat cultivars and the implication on Chinese wheat breeding for quality. Cereal Chem. 97(4) : 762-771. https://doi.org/10.1002/cche.10290
  11. He, Z.H., L. Liu, X. C. Xia, J. J. Liu, and R. J. Pena. 2005. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheat. Cereal Chem. 82(4) : 345-350. https://doi.org/10.1094/CC-82-0345
  12. Islam, S., Z. Yu, M. She, Y. Zhao, and W. Ma. 2019. Wheat gluten protein and its impacts on wheat processing quality. Front. Agric. Sci. Eng. 6(3) : 279-287. https://doi.org/10.15302/j-fase-2019267
  13. Johansson, E., G. Svensson, and S. Tsegaye. 2000. Genotype and environment effects on bread-making quality of Swedish-grown wheat cultivars containing high-molecular-weight glutenin subunits 2+12 or 5+10. Acta Agric. Sect. B, Soil and Plant Sci. 49 : 225-233.
  14. Kaya, Y. and M. Akcura. 2014. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci. Technol. 34 : 386-393. https://doi.org/10.1590/fst.2014.0041
  15. Kim, H. S., Y. J. Kim, K. H. Kim, H. H. Park, C. S. Kang, K. H. Kim, J. N. Hyun, and K. J. Kim. 2013. Different of agricultural characteristics and quality with fertilizer type in wheat cultivation. Korean J. Crop Sci. 58(1) : 15-19. https://doi.org/10.7740/KJCS.2013.58.1.015
  16. Kiszonas, A. M. and C. F. Morris. 2018. Wheat breeding for quality: a historical review. Cereal Chem. 95(1) : 17-34.
  17. Liu, S., S. Chao, and J. A. Anderson. 2008. New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet. 118 : 177-183. https://doi.org/10.1007/s00122-008-0886-0
  18. Luo, C., W. B. Griffin, G. Branlard, and D. L. McNeil. 2001. Comparison of low- and high molecular-weight wheat glutenin allele effects on flour quality. Theor Appl Genet. 102 : 1088-1098. https://doi.org/10.1007/s001220000433
  19. Maich, R. H., M. E. Steffolani, J. A. Di Rienzo, and A. E. Leon. 2017. Association between grain yield, grain quality and morpho-physiological traits along ten cycles of recurrent selection in bread wheat (Triticum aestivum L.). Cereal Res. Commun. 45(1) : 146-153. https://doi.org/10.1556/0806.44.2016.036
  20. Mohan, D. and R. K. Gupta. 2015. Relevance of physiological efficiency in wheat grain quality and the prospects of improvement. Physiol. Mol. Biol. Plants. 21(4) : 591-596. https://doi.org/10.1007/s12298-015-0329-8
  21. Park, C. S., C. S. Kang, J. U. Jeung, and S. H. Woo. 2011. Influence of allelic variations in glutenin on the quality of pan bread and white salted noodles made from Korean wheat cultivars. Euphytica. 180(2) : 235-250. https://doi.org/10.1007/s10681-011-0385-2
  22. Park, D. S., J. M. Ko, S. I. Han, S. K. Oh, J. N. Hyun, D. Y. Suh, D. C. Shin, and H. P. Moon. 2002. Effect of HMW glutenin subuit composition on baking quality traits in wheat. Korean J. Breed. Sci. 34(1) : 15-21.
  23. Payne, P. I. 1987. Genetics of wheat storage protein and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol. 38 : 141-153. https://doi.org/10.1146/annurev.pp.38.060187.001041
  24. Payne, P. I., M. A. Nightingale, A. F. Krattiger, and L. M. Holt. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 40 : 51-65. https://doi.org/10.1002/jsfa.2740400108
  25. Rasheed, A., W. Wen, F. Gao, S. Zhai, H. Jin, J. Liu, Q. Guo, Y. Zhang, S. Dreisigacker, X. Xia, and Z. He. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor. Appl. Genet. 129(10) : 1843-1860. https://doi.org/10.1007/s00122-016-2743-x
  26. Rasheed, A., X. Xia, Y. Yan, R. Appels, T. Mahmood, and Z. He. 2014. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J. Cereal Sci. 60(1) : 11-24. https://doi.org/10.1016/j.jcs.2014.01.020
  27. RDA (Rural Development Administration). 2012. Manual for standard evaluation method in agricultural experiment and research. pp. 315-374.
  28. RDA (Rural Development Administration). 2014. Blending model for composite flour from domestic and improted wheat flour based on their composition properties. pp. 13-17.
  29. Shewry, P. R., R. D'ovidio, D. Lafiandra, J. A. Jenkins, E. N. C. Mills, and F. Bekes. 2009. Wheat grain proteins. In: KHAN, K.; SHEWRY, P.R. (Ed.) Wheat: chemistry and technology. 4th ed. St. Paul: AACC International. 2009. pp. 223-298.
  30. Shewry, P. R. 2009. Wheat. J. Exp. Bot. 60(6) : 1537-1553. https://doi.org/10.1093/jxb/erp058
  31. Shin, D., J. K. Cha, S. M. Lee, N. R. Kabange, and J. H. Lee. 2020a. Rapid and easy high-molecular-weight glutenin subunit identification system by lab-on-a-chip in wheat (Triticum aestivum L.). Plants, 9(11) : 1517. https://doi.org/10.3390/plants9111517
  32. Shin, D., J. K. Cha, S. M. Lee, J. M. Ko, and J. H. Lee. 2020b. Validation and selection of functional allele-specific molecular markers to analyze high-molecular-weight gluten subunits composition in wheat. 2020. Korean J. Breed. Sci. 52(3) : 235-243. https://doi.org/10.9787/kjbs.2020.52.3.235
  33. Son, J. H., C. S. Kang, Y. M. Yoon, C. H. Choi, K. H. Kim, K. M. Kim, T. I. Park, T. G, Kang, S. W. Kang, C. S. Park, and S. W. Cho. 2019. Effect of high temperature during grain maturation on flour properties and end-use quality in Korean wheat cultivars. Korean J. Breed. Sci. 51(1) : 20-33. https://doi.org/10.9787/kjbs.2019.51.1.20
  34. Terasawa, Y., M. Ito, T. Tabiki, K. Nagasawa, K. Hatta, and Z. Nishio. 2016. Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.). Breed. Sci. 66(4) : 471-480. https://doi.org/10.1270/jsbbs.16026
  35. Vancini, C., G. A. M. Torres, M. Z. Miranda, L. Consoli, S. Bonow, and M. F. Grando. 2019. Impact of high-molecular-weight glutenin alleles on wheat technological quality. Qesq. Agropec. Bras. [online] 54 : e00639. https://doi.org/10.1590/s1678-3921.pab2019.v54.00639
  36. Wrigley, C., R. Asenstorfer, I. Batey, G. Cornish, L. Day, D. Mares, and K. Mrva. 2009. The biochemical and molecular basis of wheat quality. In Wheat science and trade.
  37. Xu, Q., J. Xu, C. L. Liu, C. Chang, C. P. Wang, M. S. You, B. Y. Li, and G. T. Liu. 2008. PCR-based markers for identification of HMW-GS at Glu-B1x loci in common wheat. J. Cereal Sci. 47 : 394-398. https://doi.org/10.1016/j.jcs.2007.05.002