DOI QR코드

DOI QR Code

Effect of Irrigation and Fertigation Treatments on Growth and Yield in Spring Potato Cultivation

봄 감자 재배 시 관수 및 관비 처리가 생육 및 수량에 미치는 영향

  • Kim, Jong Hyuk (Department of Applied Life Science, Gyeongsang National University) ;
  • Rho, Il Rae (Department of Agronomy, Gyeongsang National University)
  • 김종혁 (경상국립대학교 응용생명과학부) ;
  • 노일래 (경상국립대학교 농학과)
  • Received : 2022.01.20
  • Accepted : 2022.05.05
  • Published : 2022.06.01

Abstract

This study was conducted to determine the suitable amount of irrigation and fertigation for the growth and yield of spring potatoes (Solanum tuberosum L.). To investigate the effect of soil moisture content on the growth and yield of potato, five irrigation treatments were performed based on soil moisture tension: -10 kPa, -20 kPa, -30 kPa, -40 kPa, and non-irrigation. The growth and yield among the irrigation treatments was the best in the -10 kPa treatment, where the yield increased by 47% compared to the non-irrigation treatment. To determine the standard of additional fertilizer for fertigation cultivation of spring potatoes, seven treatments were performed, including a control (basic fertilization without additional fertilizer), compound fertilizer (NPK) based on 0.5 times the standard amount of fertilizer (NPK 0.5; N-P2O5-K2O: 2.5-2.2-3.25 kg/10a), NPK 0.8 (N-P2O5-K2O: 4-3.5-5 kg/10a), and NPK 1.2 (N-P2O5-K2O: 6-5.3-7.8 kg/10a), and potassium fertilizer of 2 kg (K 2), 5 kg (K 5), and 7 kg (K 7). The growth and yield among the fertilization treatments was highest in the K 5 treatment, where the yield increased by approximately 27% compared to the control. Therefore, this study suggests that irrigation with -10 kPa or fertigation with K 5 during the tuber initiation and tuber filling stage could increase the yield of spring potatoes.

본 연구는 봄 감자 재배 시 괴경 형성기와 괴경 비대기에 최적 수분함량을 구명하고 관비 재배 시 적합한 추비 기준을 마련하고자 수행 하였다. 1. 감자의 최적 수분함량을 구명하기 위한 괴경 형성기와 괴경 비대기에 관수처리 결과 관수처리 전후 지상부의 생육을 비교한 상대생장률과 대조구(무관수, 자연강우 의존) 대비 상대 생장률 모두에서 -10 kPa 및 -20 kPa 처리구에서 우수한 경향을 보였다. 2. 관수처리에 따른 지하부 생체중은 -10 kPa과 -20 kPa 처리구에서 다른 처리보다 뛰어났으며, 수확량 및 상서수량은 -10 kPa 처리구가 무관수구에 대비 약 47%가량 증수되었다. 3. 감자의 최적 관비량 설정을 위해 괴경 형성기와 괴경 비대기에 관비를 실시한 결과 관비 처리 전후 지상부의 생육을 비교한 상대생장률은 K 5 및 NPK 0.8배 관비구에서 생육이 가장 우수하였고, 대조구(무관비구, 기비만 시용) 대비 감자 지상부 상대 생장률은 K 5, K 7, NPK 1.2배 관비구에서 가장 우수하였다. 4. 관비 처리에 따른 감자 지하부 생체중 및 수량, 상서수량을 비롯한 다수의 조사항목에서 K 5 처리구가 가장 우수하였고, 수량도 K 5 처리구가 대조구 대비 약 27%가량 증수되었다.

Keywords

Acknowledgement

이 논문은 농촌진흥청 공동연구사업(과제번호:PJ015754022022)의 지원을 받았으며, 이에 감사합니다.

References

  1. Arroita, M., J. Causape, F. A. Comin, J. Diez, J. J. Jimenez, J. Lacarta, C. Lorente, D. Merchan, S. Muniz, E. Navarro, J. Val, and A. Elosegi. 2013. Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems. J. Hazard. Mater. 263(1) : 139-145 https://doi.org/10.1016/j.jhazmat.2013.06.049
  2. Arafa, A. A., S. Farouk, and H. S. Mohamed. 2011. Effect of potassium fertilizerm biostimulants and effective micro-organisms as well as their interacrion on potato growth, photosynthetics pigments and stem anatomy. J. of plant production. 2(8) : 1017-1035. https://doi.org/10.21608/jpp.2011.85634
  3. Bhattarai, B. and K. C. Swarnima. 2016. effect of potassium on quality and yield of potato tubers-a review. SSRG - IJAES. 6(3) : 7-12. https://doi.org/10.14445/23942568/IJAES-V3I6P103
  4. Choi, G. L., K. H. Yeo, H. C. Rhee, S. C. Lee, N. J. Kang, and H. G. Choi. 2017. Establishment of optimum nitrogen and potassium application for paprika fertigation. KSBEC. 26(2) : 1-6.
  5. Clinton, C. S., B. P. Andre, P. E. Eric. 2007. Irrigation best mangement practices for potato. Amer J of Potato Res. 84 : 29-37. https://doi.org/10.1007/BF02986296
  6. Dhillon, J. S., E. M. Eickhoff, R. W. Mullen, and W. R. Raun. 2019. World potassium use efficiency in cereal crops. J. Agron. 111(2) : 889-896. https://doi.org/10.2134/agronj2018.07.0462
  7. Eissa, M. A. 2018. Efficiency of P fertigation for drip-irrigated potato grown on calcareous sandy soils. Potato res. 62 : 97-108. https://doi.org/10.1007/s11540-018-9399-7
  8. Feng, Z., S. Wan, Y. Kang, and S. Liu. 2017. Drip fertigation regime for potato on sandy soil. Emir. J. Food Agric. 29(6) : 476-484. https://doi.org/10.9755/ejfa.2017-02-275
  9. Food and agriculture organization FAOSTAT https://www.fao.org/faostat.
  10. Ha, S. G., Y. K. Sonn, K. H. Jung, Y. J. Lee, M. J. Cho, H. J. Yun, and J. K. Sung. 2015. Estimation of growth stage-based nitrogen supply levels for greenhouse semi-forcing zucchini cultivation. KJOAS. 42(4) : 319-324.
  11. Ierna, A. and G. Mauromocale. 2018. Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric. Water Manag. 201 : 21-26. https://doi.org/10.1016/j.agwat.2018.01.008
  12. Jama-Rodzenska, A., G. Janik, A. Walczak, K. A. Sowinska, and J. Sowinski. 2021. Tuber yield and water efficiency of early potato varieties (Solanum tuberosum L.) cultivated under various irrigation levels. Sci. Rep. 11 : 19121. https://doi.org/10.1038/s41598-021-97899-9
  13. Joe, J. H., H. B. Son, D. C. Jang, J. S. Lim, and H. J. Kim. 2011. RDA Interrrobang 29. RDA. pp. 9-15.
  14. Jensen, M. E., R. D. Burman, and R. G. Allen. 1990. Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practice no. 70. A.S.C.E. New York, NY. p.360.
  15. Jeong, H. K., J. H., Sung, and H. J. Lee. 2020. Analysis of social demand for countermeasures in response to extreme weather events in korean agricultural sector. J. of Climate Change Res. 11 : 235-246. https://doi.org/10.15531/ksccr.2020.11.4.235
  16. Job, A. L. G., R. P. Soratto, A. M. Fernandes, N. S. Assuncao, F. M. Fernandes, and R. Tagi. 2019. Potassium fertilization for fresh market potato production in tropical soils. Agronomy. 111(6) : 3351-3362. https://doi.org/10.2134/agronj2019.05.0336
  17. John, E. B. and R. Gavin. 2009. Advances in potato chemistry and technology(chapter 1). Academic press. Palmerston north. New zealand. p.1-27.
  18. Jung, K. S., K. H. Jung, W. K. Park, Y.S. Song, and K.H. Kim. 2010. Establishment of the optimum nitrogen application rate for oriental melon at various growth stages with a fertigation system in a plastic film house. K.J.S.S.F. 43(3) : 349-355.
  19. Karam, F., R. Massaad, S. Skaf, J. Breidy, and Rouphael, Y. 2011. Potato response to potassium application rate and timing under srmi-arid conditions. Adv. Hort. Sci., 2011 25(4) : 265-268.
  20. King, B. A., Stark, J. C., and Neibling, H. 2020. Potato production system Stark, J.C.,(Eds.), Chapter 13 Potato irrigation management. pp. 417-446. Switzerland AG: Springer Nature.
  21. Kim, S. H., H. B. Sohn, S. Y. Hong, J. H. Nam, D. C. Chang, J. T. Suh, and Y. H. Kim. 2017. Determination of greening and shelf life of potato based on washing and storage temperature condition. Korean J. Crop Sci. 62(1) : 66-72. https://doi.org/10.7740/KJCS.2016.62.1.066
  22. Kim, M. J., H. Y. Kang, T. S. Oh, and J. S. Park. 2017. Drought status and outlook for 2017. J.Korea Water Resour. Assoc. 50 : 56-61.
  23. Kolbe, H. and S. Stephan-Beckmann. 1997. Development, growth and chemical composition of the potato crop (Solanum tuberosum L.). II. Tuber and whole plant. Potato Res. 40 : 135-153. https://doi.org/10.1007/BF02358240
  24. Lee, A. S., S. J. Choi, S. J. Jeon, J. H. Maeng, J. H. Kim, and I. J. Kim. 2016. Estimating the yield of marketable potato of mulch culture using climatic elements. J.C.S.B. 61(1) : 70-77.
  25. Lee, C. S., G. J. Lee, K. Y. Shin, J. H. Ahn, J. T. Lee, and B. K. Hur. (2002) Effect of application added phosphorus and potassium for potato and chinese cabbage in mounded highland soil. K.J.S.S.F. 35(6) : 372-380.
  26. Lim, J. S., B. H. Lee, S. H. Kang, and T. G. Lee. 2020. Influence of fertilization rteatment using organic amendment based on soil testing on plant growth and nutrient use efficiency in potato. J.C.S.B. 65(4) : 436-446.
  27. Liu, C., G. H. Rubaek, F. Liu, and M. N. Andersen. 2015. Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato. Agric. Water Manag. 15 : 66-76.
  28. Love, S. L., J. C. Stark, and T. Salaiz. 2005. Response of four postato cultivars to rate and timung of nitrogen fertilizer. Amer J of Potato Res. 82 : 21-30. https://doi.org/10.1007/BF02894916
  29. Markakis, P. 1975. The nutritive value of potato protein. In: Pro-tein Nutritional Quality Foods Feeds, II, Friedman, M., Ed., Dekker, New York. U.S.A. p.471-487.
  30. Matteau, J. P., P. Celicourt, G. Letourneau, T. Gumiere, and S. J. Gumirer. 2021. Potato varieties response tosoil matric potential based irrigation. agronomy. 11(2) : 352-362. https://doi.org/10.3390/agronomy11020352
  31. McCay, C. M., J. B. McCay, and O. Smith. 1987. The nutritive value of potatoes. In: Potato Processing Talburt, W. F. and Smith, O., Eds., AVI, Connecticut. U.S.A. p.287-331.
  32. Ministry of Agriculture, Food and Rural Affairs. https://www.mafra.go.kr/sites/mafra/index.do
  33. Nam, S. S., I. H. Choi, S. K. Bae, and J. K. Bang. 2007. Effect of irrigation level on plant growth and bulb yield during bulb development stage of garlic plants. H.S.T. 25(3) : 169-173.
  34. Naumann, M., M. Koch, H. Thiel, A. Gransee, and E. Pawelzik. 2020. The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Res. 63 : 121-137. https://doi.org/10.1007/s11540-019-09430-3
  35. Obidiegwu, J. E., G.J. Bryan, H. G. Jones, and A. Prashar. 2015. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 6 : 542-565.
  36. Plich, J., M. D. Boguszewska, and W. Marczwwski. 2020. Relations between photosynthetic parameters and drought-induce tuber yield decrease in katahdin-derived potato cultivars. Potato Res. 63 : 463-477. https://doi.org/10.1007/s11540-020-09451-3
  37. Pinheiro, C. and M. Chaves. 2010. Photosynthesis and drought: can we make metabolic connections from available data. J. Exp. Bot. 62 : 869-882. https://doi.org/10.1093/jxb/erq340
  38. Raymundo, R., S. Asseng, R. Robertson, A. Petsakos, G. Hoogenboom, R. Quiroz, G. Hareau, and J. Wolf. 2018. Climate change impact on global potato production. Eur J Agron. 100 : 87-98. https://doi.org/10.1016/j.eja.2017.11.008
  39. Reyes-Cabrera, J., L. Zotarelli, D. L. Rowland, M. D. Dukes, and S. A. Sargent. 2014. Drip as alternative Irrigation method for potato in florida sandy soils. Am. J. Potato Res. 91 : 504-516. https://doi.org/10.1007/s12230-014-9381-0
  40. Roberts, T. L. and A. E. Johnston. 2015. Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycli. 105 : 275-281 https://doi.org/10.1016/j.resconrec.2015.09.013
  41. Rural Development Administration (RAD). 2018. Guide of agricultural technology(potato). RDA. Jeonju. Korea. pp.154.
  42. Song, Y. S., H. J. Jun, W. K. Park, B. G. Jung, K. S. Jung, K. S. Lee, and Y. S. Yoon. 2008. Determination of optimal application rates of phosphorus and potassium fertilizers for paddy rice. K.J.S.S.F. 41(2) : 75-82.
  43. Shock, C. C., C. Cliton, A. B. Prerira, and E. P. Eldredge. 2007. Irrigation best management practices for potato. A.J.P.R. 84 : 29-37. https://doi.org/10.1007/BF02986296
  44. Slavador, R. M. and D. M. Banoc 2020. Yield response of sweet potato (Ipomoea batatas L. Lam) to soil solarization and nutrient management under micro-fertigation technique. SVU-IJAS. 2(2) : 45-59.
  45. Raun, W. R. and G. V. Johnson. 1999. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. J. Agron. 91(4) : 357-363. https://doi.org/10.2134/agronj1999.00021962009100030001x