Acknowledgement
The authors thank the referee for valuable comments and suggestions that improved the paper.
References
- G. Chen, Homoclinic orbits for second order Hamiltonian systems with asymptotically linear terms at infinity, Adv. Difference Equ. 2014 (2014), 114, 9 pp. https://doi.org/10.1186/1687-1847-2014-114
- H. Chen and Z. He, Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems, Adv. Difference Equ. 2014 (2014), 161, 15 pp. https://doi.org/10.1186/1687-1847-2014-161
- P. Chen and X. H. Tang, Fast homoclinic solutions for a class of damped vibration problems with subquadratic potentials, Math. Nachr. 286 (2013), no. 1, 4-16. https://doi.org/10.1002/mana.201100287
- P. Chen, X. H. Tang, and R. P. Agarwal, Fast homoclinic solutions for a class of damped vibration problems, Appl. Math. Comput. 219 (2013), no. 11, 6053-6065. https: //doi.org/10.1016/j.amc.2012.10.103
- Y. H. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal. 25 (1995), no. 11, 1095-1113. https://doi.org/10.1016/0362-546X(94)00229-B
- K. Fathi and M. Timoumi, Even homoclinic orbits for a class of damped vibration systems, Indag. Math. (N.S.) 28 (2017), no. 6, 1111-1125. https://doi.org/10.1016/j.indag.2017.08.002
- M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations 219 (2005), no. 2, 375-389. https://doi.org/10.1016/j.jde.2005.06.029
- W. Jiang and Q. Zhang, Multiple homoclinic solutions for superquadratic Hamiltonian systems, Electron. J. Differential Equations 2016 (2016), Paper No. 66, 12 pp.
- R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal. 225 (2005), no. 2, 352-370. https://doi.org/10.1016/j.jfa.2005.04.005
- X. Lv, S. Lu, and J. Jiang, Homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal. Real World Appl. 13 (2012), no. 1, 176-185. https://doi.org/10.1016/j.nonrwa.2011.07.023
- X. Lv, S. Lu, and P. Yan, Existence of homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal. 72 (2010), no. 1, 390-398. https://doi.org/10.1016/j.na.2009.06.073
- H. Poincare and R. Magini, Les methodes nouvelles de la mecanique celeste, II Nuovo Cimento 1899, 10, 128-130. https://doi.org/10.1007/BF02742713
- P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), no. 1-2, 33-38. https://doi.org/10.1017/S0308210500024240
- P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z. 206 (1991), no. 3, 473-499. https://doi.org/10.1007/BF02571356
- J. Sun and T. Wu, Homoclinic solutions for a second-order Hamiltonian system with a positive semi-definite matrix, Chaos Solitons Fractals 76 (2015), 24-31. https://doi.org/10.1016/j.chaos.2015.03.004
- J. Sun and T. Wu, Multiplicity and concentration of homoclinic solutions for some second order Hamiltonian systems, Nonlinear Anal. 114 (2015), 105-115. https://doi.org/10.1016/j.na.2014.11.009
- X. H. Tang and X. Lin, Homoclinic solutions for a class of second-order Hamiltonian systems, J. Math. Anal. Appl. 354 (2009), no. 2, 539-549. https://doi.org/10.1016/j.jmaa.2008.12.052
- X. H. Tang and X. Lin, Infinitely many homoclinic orbits for Hamiltonian systems with indefinite sign subquadratic potentials, Nonlinear Anal. 74 (2011), no. 17, 6314-6325. https://doi.org/10.1016/j.na.2011.06.010
- X. H. Tang and L. Xiao, Homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal. 71 (2009), no. 3-4, 1140-1152. https://doi.org/10.1016/j.na.2008.11.038
- M. Timoumi, Existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 9.
- M. Timoumi, Ground state homoclinic orbits of a class of superquadratic damped vibration problems, Communications in Optimisation Theory 2017 (2017), Article AD29.
- L.-L. Wan and C.-L. Tang, Existence of homoclinic orbits for second order Hamiltonian systems without (AR) condition, Nonlinear Anal. 74 (2011), no. 16, 5303-5313. https://doi.org/10.1016/j.na.2011.05.011
- J. Wei and J. Wang, Infinitely many homoclinic orbits for the second order Hamiltonian systems with general potentials, J. Math. Anal. Appl. 366 (2010), no. 2, 694-699. https://doi.org/10.1016/j.jmaa.2009.12.024
- Z. Zhang, Existence of homoclinic solutions for second order Hamiltonian systems with general potentials, J. Appl. Math. Comput. 44 (2014), no. 1-2, 263-272. https://doi.org/10.1007/s12190-013-0692-y
- Q. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems, Math. Nachr. 288 (2015), no. 8-9, 1073-1081. https://doi.org/10.1002/mana.201200293
- Q. Zhang and C. Liu, Infinitely many homoclinic solutions for second order Hamiltonian systems, Nonlinear Anal. 72 (2010), no. 2, 894-903. https://doi.org/10.1016/j.na.2009.07.021
- Z. Zhang and R. Yuan, Homoclinic solutions for some second order non-autonomous Hamiltonian systems with the globally superquadratic condition, Nonlinear Anal. 72 (2010), no. 3-4, 1809-1819. https://doi.org/10.1016/j.na.2009.09.022
- Z. Zhang and R. Yuan, Fast homoclinic solutions for some second order non-autonomous systems, J. Math. Anal. Appl. 376 (2011), no. 1, 51-63. https://doi.org/10.1016/j.jmaa.2010.11.034