DOI QR코드

DOI QR Code

INFINITELY MANY HOMOCLINIC SOLUTIONS FOR DAMPED VIBRATION SYSTEMS WITH LOCALLY DEFINED POTENTIALS

  • Received : 2021.01.07
  • Accepted : 2021.11.09
  • Published : 2022.07.31

Abstract

In this paper, we are concerned with the existence of infinitely many fast homoclinic solutions for the following damped vibration system $$(1){\hspace{32}}{\ddot{u}}(t)+q(t){\dot{u}}(t)-L(t)u(t)+{\nabla}W(t,u(t))=0,\;{\forall}t{\in}{\mathbb{R}},$$ where q ∈ C(ℝ, ℝ), L ∈ C(ℝ, ${\mathbb{R}}^{N^2}$) is a symmetric and positive definite matix-valued function and W ∈ C1(ℝ×ℝN, ℝ). The novelty of this paper is that, assuming that L is bounded from below unnecessarily coercive at infinity, and W is only locally defined near the origin with respect to the second variable, we show that (1) possesses infinitely many homoclinic solutions via a variant symmetric mountain pass theorem.

Keywords

Acknowledgement

The authors thank the referee for valuable comments and suggestions that improved the paper.

References

  1. G. Chen, Homoclinic orbits for second order Hamiltonian systems with asymptotically linear terms at infinity, Adv. Difference Equ. 2014 (2014), 114, 9 pp. https://doi.org/10.1186/1687-1847-2014-114
  2. H. Chen and Z. He, Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems, Adv. Difference Equ. 2014 (2014), 161, 15 pp. https://doi.org/10.1186/1687-1847-2014-161
  3. P. Chen and X. H. Tang, Fast homoclinic solutions for a class of damped vibration problems with subquadratic potentials, Math. Nachr. 286 (2013), no. 1, 4-16. https://doi.org/10.1002/mana.201100287
  4. P. Chen, X. H. Tang, and R. P. Agarwal, Fast homoclinic solutions for a class of damped vibration problems, Appl. Math. Comput. 219 (2013), no. 11, 6053-6065. https: //doi.org/10.1016/j.amc.2012.10.103
  5. Y. H. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal. 25 (1995), no. 11, 1095-1113. https://doi.org/10.1016/0362-546X(94)00229-B
  6. K. Fathi and M. Timoumi, Even homoclinic orbits for a class of damped vibration systems, Indag. Math. (N.S.) 28 (2017), no. 6, 1111-1125. https://doi.org/10.1016/j.indag.2017.08.002
  7. M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations 219 (2005), no. 2, 375-389. https://doi.org/10.1016/j.jde.2005.06.029
  8. W. Jiang and Q. Zhang, Multiple homoclinic solutions for superquadratic Hamiltonian systems, Electron. J. Differential Equations 2016 (2016), Paper No. 66, 12 pp.
  9. R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal. 225 (2005), no. 2, 352-370. https://doi.org/10.1016/j.jfa.2005.04.005
  10. X. Lv, S. Lu, and J. Jiang, Homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal. Real World Appl. 13 (2012), no. 1, 176-185. https://doi.org/10.1016/j.nonrwa.2011.07.023
  11. X. Lv, S. Lu, and P. Yan, Existence of homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal. 72 (2010), no. 1, 390-398. https://doi.org/10.1016/j.na.2009.06.073
  12. H. Poincare and R. Magini, Les methodes nouvelles de la mecanique celeste, II Nuovo Cimento 1899, 10, 128-130. https://doi.org/10.1007/BF02742713
  13. P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), no. 1-2, 33-38. https://doi.org/10.1017/S0308210500024240
  14. P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z. 206 (1991), no. 3, 473-499. https://doi.org/10.1007/BF02571356
  15. J. Sun and T. Wu, Homoclinic solutions for a second-order Hamiltonian system with a positive semi-definite matrix, Chaos Solitons Fractals 76 (2015), 24-31. https://doi.org/10.1016/j.chaos.2015.03.004
  16. J. Sun and T. Wu, Multiplicity and concentration of homoclinic solutions for some second order Hamiltonian systems, Nonlinear Anal. 114 (2015), 105-115. https://doi.org/10.1016/j.na.2014.11.009
  17. X. H. Tang and X. Lin, Homoclinic solutions for a class of second-order Hamiltonian systems, J. Math. Anal. Appl. 354 (2009), no. 2, 539-549. https://doi.org/10.1016/j.jmaa.2008.12.052
  18. X. H. Tang and X. Lin, Infinitely many homoclinic orbits for Hamiltonian systems with indefinite sign subquadratic potentials, Nonlinear Anal. 74 (2011), no. 17, 6314-6325. https://doi.org/10.1016/j.na.2011.06.010
  19. X. H. Tang and L. Xiao, Homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal. 71 (2009), no. 3-4, 1140-1152. https://doi.org/10.1016/j.na.2008.11.038
  20. M. Timoumi, Existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 9.
  21. M. Timoumi, Ground state homoclinic orbits of a class of superquadratic damped vibration problems, Communications in Optimisation Theory 2017 (2017), Article AD29.
  22. L.-L. Wan and C.-L. Tang, Existence of homoclinic orbits for second order Hamiltonian systems without (AR) condition, Nonlinear Anal. 74 (2011), no. 16, 5303-5313. https://doi.org/10.1016/j.na.2011.05.011
  23. J. Wei and J. Wang, Infinitely many homoclinic orbits for the second order Hamiltonian systems with general potentials, J. Math. Anal. Appl. 366 (2010), no. 2, 694-699. https://doi.org/10.1016/j.jmaa.2009.12.024
  24. Z. Zhang, Existence of homoclinic solutions for second order Hamiltonian systems with general potentials, J. Appl. Math. Comput. 44 (2014), no. 1-2, 263-272. https://doi.org/10.1007/s12190-013-0692-y
  25. Q. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems, Math. Nachr. 288 (2015), no. 8-9, 1073-1081. https://doi.org/10.1002/mana.201200293
  26. Q. Zhang and C. Liu, Infinitely many homoclinic solutions for second order Hamiltonian systems, Nonlinear Anal. 72 (2010), no. 2, 894-903. https://doi.org/10.1016/j.na.2009.07.021
  27. Z. Zhang and R. Yuan, Homoclinic solutions for some second order non-autonomous Hamiltonian systems with the globally superquadratic condition, Nonlinear Anal. 72 (2010), no. 3-4, 1809-1819. https://doi.org/10.1016/j.na.2009.09.022
  28. Z. Zhang and R. Yuan, Fast homoclinic solutions for some second order non-autonomous systems, J. Math. Anal. Appl. 376 (2011), no. 1, 51-63. https://doi.org/10.1016/j.jmaa.2010.11.034