DOI QR코드

DOI QR Code

STUDY OF GRADIENT SOLITONS IN THREE DIMENSIONAL RIEMANNIAN MANIFOLDS

  • 투고 : 2021.02.06
  • 심사 : 2022.01.19
  • 발행 : 2022.07.31

초록

We characterize a three-dimensional Riemannian manifold endowed with a type of semi-symmetric metric P-connection. At first, it is proven that if the metric of such a manifold is a gradient m-quasi-Einstein metric, then either the gradient of the potential function 𝜓 is collinear with the vector field P or, λ = -(m + 2) and the manifold is of constant sectional curvature -1, provided P𝜓 ≠ m. Next, it is shown that if the metric of the manifold under consideration is a gradient 𝜌-Einstein soliton, then the gradient of the potential function is collinear with the vector field P. Also, we prove that if the metric of a 3-dimensional manifold with semi-symmetric metric P-connection is a gradient 𝜔-Ricci soliton, then the manifold is of constant sectional curvature -1 and λ + 𝜇 = -2. Finally, we consider an example to verify our results.

키워드

과제정보

We would like to thank the referee and editor for reviewing the paper carefully and their valuable comments to improve the quality of the paper.

참고문헌

  1. S. Altay and F. Ozen, Some examples of recurrent Riemannian manifolds with semi-symmetric metric connection, Studia Sci. Math. Hungar. 44 (2007), no. 1, 15-25. https://doi.org/10.1556/SScMath.2006.1002
  2. O. Bahadir, M. D. Siddiqi, and M. A. Akyol, η-Ricci solitons on trans-Sasakian manifolds with quarter-symmetric non-metric connection, Honam Math. J. 42 (2020), no. 3, 601-620. https://doi.org/10.5831/HMJ.2020.42.3.601
  3. A. A. Barros and J. N. V. Gomes, Triviality of compact m-quasi-Einstein manifolds, Results Math. 71 (2017), no. 1-2, 241-250. https://doi.org/10.1007/s00025-016-0556-5
  4. A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
  5. A. M. Blaga, Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), no. 1, 1-13.
  6. A. M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2016), no. 2, 489-496. https://doi.org/10.2298/FIL1602489B
  7. A. M. Blaga, On warped product gradient η-Ricci solitons, Filomat 31 (2017), no. 18, 5791-5801. https://doi.org/10.2298/fil1718791b
  8. A. M. Blaga, Some geometrical aspects of Einstein, Ricci and Yamabe solitons, J. Geom. Symmetry Phys. 52 (2019), 17-26. https://doi.org/10.7546/jgsp-52-2019-17-26
  9. A. M. Blaga, K. K. Baishya, and N. Sarkar, Ricci solitons in a generalized weakly (Ricci) symmetric D-homothetically deformed Kenmotsu manifold, Ann. Univ. Paedagog. Crac. Stud. Math. 18 (2019), 123-136. https://doi.org/10.2478/aupcsm-2019-0009
  10. A. M. Blaga, S. Y. Perktas, B. E. Acet, and F. E. Erdogan, η-Ricci solitons in (ε)-almost paracontact metric manifolds, Glas. Mat. Ser. III 53(73) (2018), no. 1, 205-220. https://doi.org/10.3336/gm.53.1.14
  11. J.-P. Bourguignon, Ricci curvature and Einstein metrics, in Global differential geometry and global analysis (Berlin, 1979), 42-63, Lecture Notes in Math., 838, Springer, Berlin, 1981.
  12. H.-D. Cao, Recent progress on Ricci solitons, in Recent advances in geometric analysis, 1-38, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010.
  13. H.-D. Cao and D. Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175-185. http://projecteuclid.org/euclid.jdg/1287580963
  14. J. S. Case, The nonexistence of quasi-Einstein metrics, Pacific J. Math. 248 (2010), no. 2, 277-284. https://doi.org/10.2140/pjm.2010.248.277
  15. J. S. Case, Y.-J. Shu, and G. Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), no. 1, 93-100. https://doi.org/10.1016/j.difgeo.2010.11.003
  16. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337-370. https://doi.org/10.2140/pjm.2017.287.337
  17. G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
  18. G. Catino, L. Mazzieri, and S. Mongodi, Rigidity of gradient Einstein shrinkers, Commun. Contemp. Math. 17 (2015), no. 6, 1550046, 18 pp. https://doi.org/10.1142/S0219199715500467
  19. S. K. Chaubey and U. C. De, Characterization of three-dimensional Riemannian manifolds with a type of semi-symmetric metric connection admitting Yamabe soliton, J. Geom. Phys. 157 (2020), 103846, 8 pp. https://doi.org/10.1016/j.geomphys.2020.103846
  20. S. K. Chaubey, J. W. Lee, and S. K. Yadav, Riemannian manifolds with a semi-symmetric metric P-connection, J. Korean Math. Soc. 56 (2019), no. 4, 1113-1129. https://doi.org/10.4134/JKMS.j180642
  21. S. K. Chaubey and R. H. Ojha, On a semi-symmetric non-metric connection, Filomat 26 (2012), no. 2, 269-275. https://doi.org/10.2298/FIL1202269C
  22. X. Chen, Quasi-Einstein structures and almost cosymplectic manifolds, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 72, 14 pp. https://doi.org/10.1007/s13398-020-00801-x
  23. J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. (2) 61 (2009), no. 2, 205-212. https://doi.org/10.2748/tmj/1245849443
  24. U. C. De, On a type of semi-symmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 21 (1990), no. 4, 334-338.
  25. K. De and U. C. De, η-Ricci solitons on Kenmotsu 3-manifolds, An. Univ. Vest Timis. Ser. Mat.-Inform. 56 (2018), no. 1, 51-63. https://doi.org/10.2478/awutm-2018-0004
  26. S. A. Demirbag, On weakly Ricci symmetric manifolds admitting a semi-symmetric metric connection, Hacet. J. Math. Stat. 41 (2012), no. 4, 507-513.
  27. A. Friedmann and J. A. Schouten, Uber die Geometrie der halbsymmetrischen Uber-tragungen, Math. Z. 21 (1924), no. 1, 211-223. https://doi.org/10.1007/BF01187468
  28. A. Ghosh, m-quasi-Einstein metric and contact geometry, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2019), no. 3, 2587-2600. https://doi.org/10.1007/s13398-019-00642-3
  29. R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
  30. H. A. Hayden, Sub-Spaces of a Space with Torsion, Proc. London Math. Soc. (2) 34 (1932), no. 1, 27-50. https://doi.org/10.1112/plms/s2-34.1.27
  31. G. Huang, Integral pinched gradient shrinking ρ-Einstein solitons, J. Math. Anal. Appl. 451 (2017), no. 2, 1045-1055. https://doi.org/10.1016/j.jmaa.2017.02.051
  32. D. Kar, P. Majhi, and U. C. De, η-Ricci solitons on 3-dimensional N(K)-contact metric manifolds, Acta Univ. Apulensis Math. Inform. No. 54 (2018), 71-88.
  33. C. Murathan and C. Ozgur, Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions, Proc. Est. Acad. Sci. 57 (2008), no. 4, 210-216. https://doi.org/10.3176/proc.2008.4.02
  34. G. Perelman, The entropy formula for the Ricci flow and its geometric application, arXiv:math/0211159.
  35. D. G. Prakasha and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom. 108 (2017), no. 2, 383-392. https://doi.org/10.1007/s00022-016-0345-z
  36. M. D. Siddiqi, η-Ricci solitons in 3-dimensional normal almost contact metric manifolds, Bull. Transilv. Univ. Brasov Ser. III 11(60) (2018), no. 2, 215-233.
  37. V. Venkatesha and H. A. Kumara, Gradient ρ-Einstein soliton on almost Kenmotsu manifolds, Ann. Univ. Ferrara Sez. VII Sci. Mat. 65 (2019), no. 2, 375-388. https://doi.org/10.1007/s11565-019-00323-4
  38. Y. Wang, Ricci solitons on almost co-Kahler manifolds, Canad. Math. Bull. 62 (2019), no. 4, 912-922. https://doi.org/10.4153/s0008439518000632
  39. K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
  40. F. Zengin, S. A. Demirbag, S. A. Uysal, and H. BagdatliYilmaz, Some vector fields on a Riemannian manifold with semi-symmetric metric connection, Bull. Iranian Math. Soc. 38 (2012), no. 2, 479-490.
  41. F. Zengin, S. A. Uysal, and S. A. Demirbag, On sectional curvature of a Riemannian manifold with semi-symmetric metric connection, Ann. Polon. Math. 101 (2011), no. 2, 131-138. https://doi.org/10.4064/ap101-2-3