DOI QR코드

DOI QR Code

Nanocomposite Electrode Materials Prepared from Pinus roxburghii and Hematite for Application in Supercapacitors

  • 투고 : 2022.03.10
  • 심사 : 2022.05.30
  • 발행 : 2022.07.25

초록

Wood-based nanocomposite electrode materials were synthesized for application in supercapacitors by mixing nanostructured hematite (Fe2O3) with highly porous activated carbon (AC) produced from the wood-waste of Pinus roxburghii. The AC was characterized using various instrumental techniques and the results showed admirable electrochemical properties, such as high surface area and reasonable porosity. Firstly, AC was tested as an electrode material for supercapacitors and it showed a specific capacitance of 59.02 Fg-1 at a current density of 1 Ag-1, cycle life of 84.2% after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 5.1 Wh/kg at a power density of 135 Wkg-1. However, when the AC was composited with different ratios of Fe2O3 (1:1, 2:1, and 1:2), there was an overall improvement in its electrochemical performance. Among the 3 ratios, 2:1 (AC:Fe2O3) had the best specific capacitance of 102.42 Fg-1 at 1 Ag-1, cycle life of 94.4% capacitance after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 8.34 Wh/kg at a power density of 395.15 Wkg-1 in 6 M KOH electrolyte in a 3-electrode experimental setup with a high working voltage of 1.55 V. Furthermore, when Fe2O3 was doubled, 1:2 (AC:Fe2O3), the electrochemical capacitive performance of the electrode twisted and deteriorated due to either the accumulation of Fe2O3 particles within the composite or higher bulk resistance value of pure Fe2O3.

키워드

과제정보

The author is grateful to the Central Department of Chemistry, Institute of Science and Technology (IOST), Tribhuvan University, Kirtipur, Nepal; Department of Chemistry, Patan Multiple Campus, Tribhuvan University, Patan Dhoka, Lalitpur, 44613, Nepal. Global Research Laboratory (GRL); Sun Moon University, South Korea; Advanced Functional Material Physics (AMP) laboratory, Suranaree University of Technology (SUT), Thailand for their support in conducting this research.

참고문헌

  1. Aadil, M., Zulfiqar, S., Warsi, M.F., Agboola, P.O., Shakir, I. 2020. Free-standing urchin-like nanoarchitectures of Co3O4 for advanced energy storage applications. Journal of Materials Research and Technology 9(6): 12697-12706. https://doi.org/10.1016/j.jmrt.2020.08.110
  2. Almendros, A.I., Martin-Lara, M.A., Ronda, A., Perez, A., Blazquez, G., Calero, M. 2015. Physico-chemical characterization of pine cone shell and its use as biosorbent and fuel. Bioresource Technology 196: 406-412. https://doi.org/10.1016/j.biortech.2015.07.109
  3. Arun, T., Prabakaran, K., Udayabhaskar, R., Mangalaraja, R.V., Akbari-Fakhrabadi, A. 2019. Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications. Applied Surface Science 485: 147-157. https://doi.org/10.1016/j.apsusc.2019.04.177
  4. Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of American the Chemical Society 60: 309-319. https://doi.org/10.1021/ja01269a023
  5. Chakraborty, S., Amal Raj, M., Mary, N.L. 2020. Biocompatible supercapacitor electrodes using green synthesised ZnO/polymer nanocomposites for efficient energy storage applications. Journal of Energy Storage 28: 101275. https://doi.org/10.1016/j.est.2020.101275
  6. Chen, J., Xu, J., Zhou, S., Zhao, N., Wong, C.P. 2016. Amorphous nanostructured FeOOH and Co-Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 21: 145-153. https://doi.org/10.1016/j.nanoen.2015.12.029
  7. Chen, S., Qiu, L., Cheng, H.M. 2020. Carbon-based fibers for advanced electrochemical energy storage devices. Chemical Reviews 120: 2811-2878. https://doi.org/10.1021/acs.chemrev.9b00466
  8. Collins, J., Zheng, D., Ngo, T., Qu, D., Foster, M. 2014. Partial graphitization of activated carbon by surface acidification. Carbon 79: 500-517. https://doi.org/10.1016/j.carbon.2014.08.009
  9. Ding, S., Li, X., Jiang, X., Hu, Q., Yan, Y., Zheng, Q., Lin, D. 2020. Core-shell nanostructured ZnO@CoS arrays as advanced electrode materials for high-performance supercapacitors. Electrochimica Acta 354: 136711. https://doi.org/10.1016/j.electacta.2020.136711
  10. Duan, H., Wang, T., Wu, X., Su, Z., Zhuang, J., Liu, S., Zhu, R., Chen, C., Pang, H. 2020. CeO2 quantum dots doped Ni-Co hydroxide nanosheets for ultrahigh energy density asymmetric supercapacitors. Chinese Chemical Letters 31(9): 2330-2332. https://doi.org/10.1016/j.cclet.2020.06.001
  11. Fan, L.T., Lee, Y.H., Gharpuray, M.M. 1982. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Advances in Biochemical Engineering 23: 157-187.
  12. Fengel, D., Wegener, G. 1983. Wood: Chemistry, Ultra-structure, Reactions. Walter de Gruyter, Berlin, Germany.
  13. Galih, N.M., Yang, S.M., Yu, S.M., Kang, S.G. 2020. Study on the mechanical properties of tropical hybrid cross laminated timber using bamboo laminated board as core layer. Journal of the Korean Wood Science and Technology 48(2): 245-252. https://doi.org/10.5658/WOOD.2020.48.2.245
  14. Gao, B., Li, Y., Tian, Y., Gai, L. 2017. Acidified activated carbon with enhanced electrochemical performance for supercapacitors. International Journal of Electrochemical Science 12: 116-127. https://doi.org/10.20964/2017.01.61
  15. Gao, S., Zhu, L., Liu, L., Gao, A., Liao, F., Shao, M. 2016. Improved energy storage performance based on gamma-ray irradiated activated carbon cloth. Electrochimica Acta 191: 908-915. https://doi.org/10.1016/j.electacta.2016.01.151
  16. Guo, C.X., Yilmaz, G., Chen, S., Chen, S., Lu, X. 2015. Hierarchical nanocomposite composed of layered V2O5/PEDOT/MnO2 nanosheets for high-performance asymmetric supercapacitors. Nano Energy 12: 76-87. https://doi.org/10.1016/j.nanoen.2014.12.018
  17. Hwang, J.W., Oh, S.W. 2020. Mechanical performances of boards made from carbonized rice husk and sawdust: The effect of resin and sawdust addition ratio. Journal of the Korean Wood Science and Technology 48(5): 696-709. https://doi.org/10.5658/WOOD.2020.48.5.696
  18. Hwang, J.W., Park, H.J., Oh, S.W. 2021a. Effect of resin impregnation ratio on the properties of ceramics made from Miscanthus sinensis var. purpurascens particle boards. Journal of the Korean Wood Science and Technology 49(4): 360-370. https://doi.org/10.5658/WOOD.2021.49.4.360
  19. Hwang, U.T., Bae, J., Lee, T., Hwang, S.Y., Kim, J.C., Park, J., Choi, I.G., Kwak, H.W., Hwang, S.W., Yeo, H. 2021b. Analysis of carbonization behavior of hydrochar produced by hydrothermal carbonization of lignin and development of a prediction model for carbonization degree using near-infrared spectroscopy. Journal of the Korean Wood Science and Technology 49(3): 213-225. https://doi.org/10.5658/WOOD.2021.49.3.213
  20. Iswanto, A.H., Tarigan, F.O., Susilowati, A., Darwis, A., Fatriasari, W. 2021. Wood chemical compositions of Raru species originating from central Tapanuli, North Sumatra, Indonesia: Effect of differences in wood species and log positions. Journal of the Korean Wood Science and Technology 49(5): 416-429. https://doi.org/10.5658/WOOD.2021.49.5.416
  21. Ju, Y.M., Jeong, H., Chea, K.S., Ahn, B.J., Lee, S.M. 2020. Evaluation of the amount of gas generated through combustion of wood charcoal and agglomerated charcoal depending on air ventilation. Journal of the Korean Wood Science and Technology 48(6): 847-860. https://doi.org/10.5658/WOOD.2020.48.6.847
  22. Kim, G.C., Kim, J.H. 2020. Changes in mechanical properties of wood due to 1 year outdoor exposure. Journal of the Korean Wood Science and Technology 48(1): 12-21. https://doi.org/10.5658/WOOD.2020.48.1.12
  23. Kim, K.H., Kim, J.Y., Kim, C.S., Choi, J.W. 2019. Pyrolysis of lignin obtained from cinnamyl alcohol dehydrogenase (CAD) downregulated Arabidopsis thaliana. Journal of the Korean Wood Science and Technology 47(4): 442-450. https://doi.org/10.5658/WOOD.2019.47.4.442
  24. Kondrat, S., Perez, C.R., Presser, V., Gogotsi, Y., Kornyshev, A.A. 2012. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy & Environmental Science 5(4): 6474-6479. https://doi.org/10.1039/c2ee03092f
  25. Krishnamoorthy, K., Pazhamalai, P., Mariappan, V.K., Nardekar, S.S., Sahoo, S., Kim, S.J. 2020. Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nature Communications 11: 2351. https://doi.org/10.1038/s41467-020-15808-6
  26. Lee, H., Kim, S., Park, M.J. 2021. Specific surface area characteristic analysis of porous carbon prepared from lignin-polyacrylonitrile copolymer by activation conditions. Journal of the Korean Wood Science and Technology 49(4): 299-314. https://doi.org/10.5658/WOOD.2021.49.4.299
  27. Lee, H.Y., Goodenough, J.B. 1999. Supercapacitor behavior with KCl electrolyte. Journal of Solid State Chemistry 144(1): 220-223. https://doi.org/10.1006/jssc.1998.8128
  28. Li, J., Chen, D., Wu, Q. 2019. α-Fe2O3 based carbon composite as pure negative electrode for application as supercapacitor. European Journal of Inorganic Chemistry 2019(10): 1301-1312. https://doi.org/10.1002/ejic.201900015
  29. Li, M., Yu, J., Wang, X., Yang, Z. 2020. 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials. Applied Surface Science 530: 147230. https://doi.org/10.1016/j.apsusc.2020.147230
  30. Liu, J., Wang, J., Xu, C., Jiang, H., Li, C., Zhang, L., Lin, J., Xiang Shen, Z.X. 2017. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Advanced Science 5(1): 1700322. https://doi.org/10.1002/advs.201700322
  31. Liu, L., Niu, Z., Chen, J. 2016. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chemical Society Reviews 45(15): 4340-4363. https://doi.org/10.1039/c6cs00041j
  32. Maile, N.C., Shinde, S.K., Patil, R.T., Fulari, A.V., Koli, R.R., Kim, D.Y., Lee, D.S., Fulari, V.J. 2019. Structural and morphological changes in binder-free MnCo2O4 electrodes for supercapacitor applications: Effect of deposition parameters. Journal of Materials Science: Materials in Electronics 30: 3729-3743. https://doi.org/10.1007/s10854-018-00655-5
  33. Mohamed, I.M.A., Yasin, A.S., Liu, C. 2020. Synthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes. Ceramics International 46(3): 3912-3920. https://doi.org/10.1016/j.ceramint.2019.10.119
  34. Molina-Sabio, M., RodRiguez-Reinoso, F., Caturla, F., Selles, M.J. 1995. Porosity in granular carbons activated with phosphoric acid. Carbon 33(8): 1105-1113. https://doi.org/10.1016/0008-6223(95)00059-M
  35. Mondal, S., Rana, U., Malik, S. 2017. Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. The Journal of Physical Chemistry C 121(14): 7573-7583. https://doi.org/10.1021/acs.jpcc.6b10978
  36. Ozcan, C., Korkmaz, M. 2019. Determination of relationship between thermal and mechanical properties of wood material. Journal of the Korean Wood Science and Technology 47(4): 408-417. https://doi.org/10.5658/WOOD.2019.47.4.408
  37. Pankaj, A., Tewari, K., Singh, S., Singh, S.P. 2018. Waste candle soot derived nitrogen doped carbon dots based fluorescent sensor probe: An efficient and inexpensive route to determine Hg(II) and Fe(III) from water. Journal of Environmental Chemistry & Engineering 6(4): 5561-5569. https://doi.org/10.1016/j.jece.2018.08.059
  38. Sarkar, A., Singh, A.K., Sarkar, D., Khan, G.G., Mandal, K. 2015. Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion. ACS Sustainable Chemistry & Engineering 3(9): 2254-2263. https://doi.org/10.1021/acssuschemeng.5b00519
  39. Schulz, H.R., Acosta, A.P., Barbosa, K.T., da Silva Junior, M.A.P., Gallio, E., de Avila Delucis, R., Gatto, D.A. 2021. Chemical, mechanical, thermal, and colorimetric features of the thermally treated Eucalyptus grandis wood planted in Brazil. Journal of the Korean Wood Science and Technology 49(3): 226-233. https://doi.org/10.5658/WOOD.2021.49.3.226
  40. Shen, H., Kong, X., Zhang, P., Song, X., Wang, H., Zhang, Y. 2021. In-situ hydrothermal synthesis of δ-MnO2/soybean pod carbon and its high performance application on supercapacitor. Journal of Alloys and Compounds 853: 157357. https://doi.org/10.1016/j.jallcom.2020.157357
  41. Shrestha, D. 2021. Efficiency of wood-dust of Dalbergia sisoo as low-cost adsorbent for rhodamine-B dye removal. Nanomaterials 11: 2217. https://doi.org/10.3390/nano11092217
  42. Shrestha, D., Maensiri, S., Wongpratat, U., Lee, S.W., Rajbhandari Nyachhyon, A. 2019. Shorea robustaderived activated carbon decorated with manganese dioxide hybrid composite for improved capacitive behaviors. Journal of Environmental Chemistry & Engineering 7(5): 103227. https://doi.org/10.1016/j.jece.2019.103227
  43. Shrestha, D., Rajbhandari, A. 2021. The effects of different activating agents on the physical and electrochemical properties of activated carbon electrodes fabricated from wood-dust of Shorea robusta. Heliyon 7(9): E07917. https://doi.org/10.1016/j.heliyon.2021.e07917
  44. Sun, N., Zhou, D., Liu, W., Shi, S., Tian, Z., Liu, F., Li, S., Wang, J., Ali, F. 2020. Tailoring surface chemistry and morphology of titanium nitride electrode for on-chip supercapacitors. ACS Sustainable Chemistry & Engineering 8(21): 7869-7878. https://doi.org/10.1021/acssuschemeng.0c00977
  45. Wang, C., Li, H., Zhao, J., Zhu, Y., Yuan, W.Z., Zhang, Y. 2013. Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts. International Journal of Hydrogen Energy 38(30): 13230-13237. https://doi.org/10.1016/j.ijhydene.2013.07.111
  46. Wang, K., Yan, R., Tian, X., Wang, Y., Lei, S., Li, X., Yang, T., Wang, X., Song, Y., Liu, Y., Liu, Z., Guo, Q. 2019. Multi-scale biomass-based carbon microtubes decorated with Ni-Co sulphides nanoparticles for supercapacitors with high rate performance. Electrochimica Acta 302: 78-91. https://doi.org/10.1016/j.electacta.2019.02.015
  47. Wei, J., Geng, S., Pitkanen, O., Jarvinen, T., Kordas, K., Oksman, K. 2020. Green carbon nanofiber networks for advanced energy storage. ACS Applied Energy Materials 3(4): 3530-3540. https://doi.org/10.1021/acsaem.0c00065
  48. Wong, S.I., Lin, H., Sunarso, J., Wong, B.T., Jia, B. 2020. Optimization of ionic-liquid based electrolyte concentration for high-energy density grapheme supercapacitors. Applied Materials Today 18: 100522. https://doi.org/10.1016/j.apmt.2019.100522
  49. Xie, K., Zhang, M., Yang, Y., Zhao, L., Qi, W. 2018. Synthesis and supercapacitor performance of polyaniline/nitrogen-doped ordered mesoporous carbon composites. Nanoscale Research Letters 13: 163. https://doi.org/10.1186/s11671-018-2577-3
  50. Xuan, H., Li, H., Yang, J., Liang, X., Xie, Z., Han, P., Wu, Y. 2020. Rational design of hierarchical coreshell structured CoMoO4@CoS composites on reduced graphene oxide for supercapacitors with enhanced electrochemical performance. International Journal of Hydrogen Energy 45(11): 6024-6035. https://doi.org/10.1016/j.ijhydene.2019.12.178
  51. Yang, C., Shi, M., Nuli, Y., Song, X., Zhao, L., Liu, J., Zhang, P., Gao, L. 2020. Interfacial electrochemical investigation of 3D space-confined MnFe2O4 for high-performance ionic liquid-based supercapacitors. Electrochimica Acta 331: 135386. https://doi.org/10.1016/j.electacta.2019.135386
  52. Yun, T.G., Park, M., Kim, D.H., Kim, D., Cheong, J.Y., Bae, J.G., Han, S.M., Kim, I.D. 2019. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13(3): 3141-3150. https://doi.org/10.1021/acsnano.8b08560
  53. Zequine, C., Ranaweera, C.K., Wang, Z., Dvornic, P.R., Kahol, P.K., Singh, S., Tripathi, P., Srivastava, O.N., Singh, S., Gupta, B.K., Gupta, G., Gupta, R.K. 2017. High-performance flexible supercapacitors obtained via recycled jute: Bio-waste to energy storage approach. Scientific Reports 7: 1174. https://doi.org/10.1038/s41598-017-01319-w
  54. Zhang, M., Li, X., Wang, X., Li, D., Zhao, N. 2020. Three-dimensional core-branch α-Fe2O3@NiO/carbon cloth heterostructured electrodes for flexible supercapacitors. Frontiers in Chemistry 7: 887. https://doi.org/10.3389/fchem.2019.00887
  55. Zhang, P., Zhang, Z., Chen, J., Dai, S. 2015. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation. Carbon 93: 39-47. https://doi.org/10.1016/j.carbon.2015.05.019
  56. Zhang, X., Fu, Q., Huang, H., Wei, L., Guo, X. 2019. Silver-quantum-dot-modified MoO3 and MnO2 paperlike freestanding films for flexible solid-state asymmetric supercapacitors. Small 15(13): e1805235.