Acknowledgement
The authors would like to thank the Ministry of Education, Culture, Research, and Technology (KEMENDIKBUDRISTEK), Indonesia, for providing Research Grant No. 2/E1/KP. PTNBH/2021. The authors would also like to thank the Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia, for providing the facilities necessary for testing.
References
- Abdul Khalil, H.P.S., Firoozian, P., Bakare, I.O., Akil, H.M., Noor, A.M. 2010. Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties. Materials & Design 31(7): 3419-3425. https://doi.org/10.1016/j.matdes.2010.01.044
- Abdul Khalil, H.P.S., Jawaid, M., Firoozian, P., Zainudin, E.S., Paridah, M.T. 2013. Dynamic mechanical properties of activated carbon-filled epoxy nanocomposite. International Journal of Polymer Analysis and Characterization 18(4): 247-256. https://doi.org/10.1080/1023666X.2013.766553
- Ahmed, S.J. 2018. Effect of particle size on mechanical properties of the recycling compact disks reinforced epoxy. Engineering and Technology Journal 36(6): 641-645. https://doi.org/10.30684/etj.36.6A.7
- Alamolhoda, S., Heshmati-Manesh, S., Ataie, A., Badiei, A. 2009. Effect of AlCl3 addition in processing of TiAl-Al2O3 nano-composite via mechanical alloying. Advanced Materials Research 264-265: 626-630. https://doi.org/10.4028/www.scientific.net/AMR.264-265.626
- Anisuzzaman, S.M., Collin, G.J., Wan Daud, W.M.A.B., Krishnaiah, D., Yee, H.S. 2015. Preparation and characterization of activated carbon from Typha orientalis leaves. International Journal of Industrial Chemistry 6(1): 9-21. https://doi.org/10.1007/s40090-014-0027-3
- Baheti, V., Naeem, S., Militky, J., Okrasa, M., Tomkova, B. 2015. Optimized preparation of activated carbon nanoparticles from acrylic fibrous wastes. Fibers and Polymers 16(10): 2193-2201. https://doi.org/10.1007/s12221-015-5364-0
- Baklanova, O.N., Plaksin, G.V., Drozdov, V.A., Duplyakin, V.K., Chesnokov, N.V., Kuznetsov, B.N. 2003. Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin. Carbon 41(9): 1793-1800. https://doi.org/10.1016/S0008-6223(03)00149-0
- BaniHani, S., AL-Oqla, F.M., Mutawe, S. 2021. Mechanical performance investigation of lignocellulosic coconut and pomegranate/LDPE biocomposite green materials. Journal of the Mechanical Behavior of Materials 30(1): 249-256. https://doi.org/10.1515/jmbm-2021-0026
- Bergna, D., Varila, T., Romar, H., Lassi, U. 2018. Comparison of the properties of activated carbons produced in one-stage and two-stage processes. Journal of Carbon Research 4(3): 41. https://doi.org/10.3390/c4030041
- Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Bjornbom, E., Minkova, V., Goranova, M. 2006. Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Processing Technology 87(10): 899-905. https://doi.org/10.1016/j.fuproc.2006.06.005
- Cagnon, B., Py, X., Guillot, A., Stoeckli, F., Chambat, G. 2009. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresource Technology 100(1): 292-298. https://doi.org/10.1016/j.biortech.2008.06.009
- Dorado, F., Sanchez, P., Alcazar-Ruiz, A., Sanchez-Silva, L. 2020. Fast pyrolysis as an alternative to the valorization of olive mill wastes. Journal of the Science of Food and Agriculture 101(7): 2650-2658.
- Dwiyaniti, M., Barruna, A.G.E., Naufal, R.M., Subiyanto, I., Setiabudy, R., Hudaya, C. 2020. Extremely high surface area of activated carbon originated from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering 909(1): 012018. https://doi.org/10.1088/1757-899X/909/1/012018
- Ediati, R., Mulyati, T.A., Mukminin, A., Sulistiono, D.O., Khoiroh, N., Fansuri, H., Prasetyoko, D. 2020. Nanoporous carbon prepared with MOF-5 as a template and activated using KOH for hydrogen storage. Jurnal Kimia Valensi 6(1): 20-31. https://doi.org/10.15408/jkv.v6i1.13621
- El-Hendawy, A.A., Alexander, A.J., Andrews, R.J., Forrest, G. 2008. Effects of activation schemes on porous, surface and thermal properties of activated carbon obtained cotton stalks. Journal of Analytical and Applied Pyrolysis 82(2): 272-278. https://doi.org/10.1016/j.jaap.2008.04.006
- Faridul Hasan, K.M., Horvath, P.G., Koczan, Z., Alpar, T. 2021. Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites. Scientific Reports 11(1): 3618. https://doi.org/10.1038/s41598-021-83140-0
- Firoozian, P., Bhat, I.U.H., Abdul Khalil, H.P.S., Noor, A.M., Akil, H.M., Bhat, A.H. 2011. High surface area activated carbon prepared from agricultural biomass: Empty fruit bunch (EFB), bamboo stem and coconut shells by chemical activation with H3PO4. Materials Technology 26(5): 222-228.
- Gale, M., Nguyen, T., Moreno, M., Gilliard-AbdulAziz, K.L. 2021. Physiochemical properties of biochar and activated carbon from biomass residue: Influence of process conditions to adsorbent properties. ACS Omega 6(15): 10224-10233. https://doi.org/10.1021/acsomega.1c00530
- Hamamoto, Y., Alam, K.C.A., Saha, B.B., Koyama, S., Akisawa, A., Kashiwagi, T. 2006. Study on adsorption refrigeration cycle utilizing activated carbon fibers. Part 1. Adsorption characteristics. International Journal of Refrigeration 29(2): 305-314. https://doi.org/10.1016/j.ijrefrig.2005.04.008
- Hendrawan, Y., Sajidah, N., Umam, C., Fauzy, M.R., Wibisono, Y., Hawa, L.C. 2019. Effect of carbonization temperature variations and activator agent types on activated carbon characteristics of Sengon wood waste (Paraserianthes falcataria (L.) Nielsen). IOP Conference Series: Earth and Environmental Science 239: 012006. https://doi.org/10.1088/1755-1315/239/1/012006
- Hesas, R.H., Arami-Niya, A., Wan Daud, W.M.A., Sahu, J.N. 2013. Preparation and characterization of activated carbon from apple waste by microwave-assisted phosphoric acid activation: Application in methylene blue adsorption. BioResources 8(2): 2950-2966.
- Hwang, H., Choi, J.W. 2018. Preparation of nanoporous activated carbon with sulfuric acid lignin and its application as a biosorbent. Journal of the Korean Wood Science and Technology 46(1): 17-28. https://doi.org/10.5658/WOOD.2018.46.1.17
- Ismail, A., Sudrajat, H., Jumbianti, D. 2010. Activated carbon from durian seed by H3PO4 activation: Preparation and pore structure characterization. Indonesian Journal of Chemistry 10(1): 36-40. https://doi.org/10.22146/ijc.21495
- Jagtoyen, M., Derbyshire, F. 1998. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36(7-8): 1085-1097. https://doi.org/10.1016/S0008-6223(98)00082-7
- Jawaid, M., Abdul Khalil, H.P.S. 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers 86(1): 1-18. https://doi.org/10.1016/j.carbpol.2011.04.043
- Jung, M.W., Ahn, K.H., Lee, Y., Kim, K.P., Rhee, J.S., Park, J.T., Paeng, K.J. 2001. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchemical Journal 70(2): 123-131. https://doi.org/10.1016/S0026-265X(01)00109-6
- Ko, T.L., Phyo, S.W., Ni, K.T. 2018. Effectiveness of prepared corn husk activated carbon on the abatement of sodium chloride content in fish sauce. Universal Journal of Agricultural Research 6(2): 91-97. https://doi.org/10.13189/ujar.2018.060206
- Kundie, F., Azhari, C.H., Muchtar, A., Ahmad, Z.A. 2018. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. Journal of Physical Science 29(1): 141-165. https://doi.org/10.21315/jps2018.29.1.10
- Kwon, S.C., Adachi, T., Araki, W., Yamaji, A. 2008. Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites. Composites Part B: Engineering 39(4): 740-746. https://doi.org/10.1016/j.compositesb.2007.02.030
- Lee, H., Kim, S., Park, M.J. 2021. Specific surface area characteristic analysis of porous carbon prepared from lignin-polyacrylonitrile copolymer by activation conditions. Journal of the Korean Wood Science and Technology 49(4): 299-314. https://doi.org/10.5658/WOOD.2021.49.4.299
- Lee, H.M., Kim, K.W., Park, Y.K., An, K.H., Park, S.J., Kim, B.J. 2019. Activated carbons from thermoplastic precursors and their energy storage applications. Nanomaterials 9(6): 896. https://doi.org/10.3390/nano9060896
- Liu, H., Su, Y., Liu, C., Zhou, A., Chu, X., Liu, S., Xing, X., Tang, E. 2021. Practical and sustainable modification method on activated carbon to improve the decolorization process in the acetaminophen pharmaceutical industry. ACS Omega 6(8): 5451-5462. https://doi.org/10.1021/acsomega.0c05637
- Lua, A.C., Yang, T. 2005. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum condition. Journal of Colloid and Interface Science 290(2): 505-513. https://doi.org/10.1016/j.jcis.2005.04.063
- Lutfi, M., Hanafi, Susilo, B., Prasetyo, J., Sandra, Prajogo, U. 2021. Characteristics of activated carbon from coconut shell (Cocos nucifera) through chemical activation process. IOP Conference Series: Earth and Environmental Science 733(1): 012134. https://doi.org/10.1088/1755-1315/733/1/012134
- Maghami, S., Shahrooz, M., Mehrabani-Zeinabad, A., Zornoza, B., Sadeghi, M. 2020. Characterization of the polymer/particle interphase in composite materials by molecular probing. Polymer 205: 122792. https://doi.org/10.1016/j.polymer.2020.122792
- Maulina, S., Handika, G., Irvan, Iswanto, A.H. 2020. Quality comparison of activated carbon produced from oil palm fronds by chemical activation using sodium carbonate versus sodium chloride. Journal of the Korean Wood Science and Technology 48(4): 503-512. https://doi.org/10.5658/WOOD.2020.48.4.503
- Molina-Sabio, M., Rodriguez-Reinoso, F. 2004. Role of chemical activation in the development of carbon porosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 241(1-3): 15-25. https://doi.org/10.1016/j.colsurfa.2004.04.007
- Muller, B.R. 2010. Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon. Carbon 48(12): 3607-3615. https://doi.org/10.1016/j.carbon.2010.06.011
- Naihi, H., Baini, R., Yakub, I. 2021. Oil palm biomass-based activated carbons for the removal of cadmium: A review. AIMS Materials Science 8(3): 453-468. https://doi.org/10.3934/matersci.2021028
- Nazem, M.A., Zare, M.H., Shirazian, S. 2020. Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes. RSC Advances 10(3): 1463-1475. https://doi.org/10.1039/c9ra07409k
- Nezbedova, E., Krcma, F., Majer, Z., Hutar, P. 2016. Effect of particles size on mechanical properties of polypropylene particulate composites. International Journal of Structural Integrity 7(5): 690-699. https://doi.org/10.1108/IJSI-09-2015-0030
- Nosonovsky, M., Bhushan, B. 2009. Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1893): 1511-1539. https://doi.org/10.1098/rsta.2009.0008
- Olivares-Marin, M., Fernandez-Gonzalez, C., MaciasGarcia, A., Gomez-Serrano, V. 2007. Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy Fuels 21(5): 2942-2949. https://doi.org/10.1021/ef060652u
- Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3: 10. https://doi.org/10.1186/1754-6834-3-10
- Park, S.H., Jang, J.H., Wistara, N.J., Hidayat, W., Lee, M., Febrianto, F. 2018. Anatomical and physical properties of Indonesian bamboos carbonized at different temperatures. Journal of the Korean Wood Science and Technology 46(6): 656-669. https://doi.org/10.5658/WOOD.2018.46.6.656
- Prachayawarakorn, J., Khunsumled, S., Thongpin, C., Kositchaiyong, A., Sombatsompop, N. 2008. Effects of silane and MAPE coupling agents on the properties and interfacial adhesion of wood-filled PVC/LDPE blend. Journal of Applied Polymer Science 108(6): 3523-3530. https://doi.org/10.1002/app.27973
- Qi, Y., Huang, Y.X., Ma, H.X., Yu, W.J., Kim, N.H., Zhang, Y.H. 2019. Influence of a novel mold inhibitor on mechanical properties and water repellency of bamboo fiber-based composites. Journal of the Korean Wood Science and Technology 47(3): 336-343. https://doi.org/10.5658/WOOD.2019.47.3.336
- Rahman, M.M., Ara, M.G., Alim, M.A., Uddin, M.S., Najda, A., Albadrani, G.M., Sayed, A.A., Mousa, S.A., Abdel-Daim, M.M. 2021. Mesoporous carbon: A versatile material for scientific applications. International Journal of Molecular Sciences 22(9): 4498. https://doi.org/10.3390/ijms22094498
- Rahmawati, F., Ridassepri, A.F., Chairunnisa, Wijayanta, A.T., Nakabayashi, K., Miyawaki, J., Miyazaki, T. 2021. Carbon from bagasse activated with water vapor and its adsorption performance for methylene blue. Applied Sciences 11(2): 678. https://doi.org/10.3390/app11020678
- Ramirez, A.P., Giraldo, S., Ulloa, M., Florez, E., Acelas, N.Y. 2017. Production and characterization of activated carbon from wood wastes. Journal of Physics: Conference Series 935: 012012. https://doi.org/10.1088/1742-6596/935/1/012012
- Ruiz, V., Blanco, C., Granda, M., Menendez, R., Santamaria, R. 2007. Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. Journal of Applied Electrochemistry 37(6): 717-721. https://doi.org/10.1007/s10800-007-9305-5
- Ruiz, V., Blanco, C., Santamaria, R., Ramos-Fernandez, J.M., Martinez-Escandell, M., Sepulveda-Escribano, A., Rodriguez-Reinoso, F. 2009. An activated carbon monolith as an electrode material for supercapacitors. Carbon 47(1): 195-200. https://doi.org/10.1016/j.carbon.2008.09.048
- Saputro, E.A., Wulan, V.D.R., Winata, B.Y., Yogaswara, R.R., Erliyanti, N.K. 2020. Process of activated carbon form coconut shells through chemical activation. Natural Science: Journal of Science and Technology 9(1): 23-28.
- Shalygina, T.A., Rudenko, M.S., Nemtsev, I.V., Parfenov, V.A., Voronina, S.Y., Simonov-Emelyanov, I.D., Borisova, P.E. 2021. Influence of the filler particles' surface morphology on the polyurethane matrix's structure formation in the composite. Polymers 13(22): 3864. https://doi.org/10.3390/polym13223864
- Sherif El-Eskandarany, M., Al-Hazza, A., Al-Hajji, L.A., Ali, N., Al-Duweesh, A.A., Banyan, M., Al-Ajmi, F. 2021. Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite. Nanomaterials 11(10): 2484. https://doi.org/10.3390/nano11102484
- Thithai, V., Choi, J.W. 2020. Physicochemical properties of activated carbon produced from corn stover by chemical activation under various catalysts and temperatures. Forest Bioenergy 30(2): 8-16. https://doi.org/10.37581/KFB.2020.12.30.2.8
- Tiwari, A.P., Mukhiya, T., Muthurasu, A., Chhetri, K., Lee, M., Dahal, B., Lohani, P.C., Kim, H.Y. 2021. A review of electrospun carbon nanofiber-based negative electrode materials for supercapacitors. Electrochem 2(2): 236-250. https://doi.org/10.3390/electrochem2020017
- Tsujimoto, A., Barkmeier, W.W., Fischer, N.G., Nojiri, K., Nagura, Y., Takamizawa, T., Latta, M.A., Miazaki, M. 2018. Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors. Japanese Dental Science Review 54(2): 76-87. https://doi.org/10.1016/j.jdsr.2017.11.002
- Wang, X., Zhou, X., Chen, W., Chen, M., Liu, C. 2019. Enhancement of the electrochemical properties of commercial coconut shell-based activated carbon by H2O dielectric barrier discharge plasma. Royal Society Open Science 6(2): 180872. https://doi.org/10.1098/rsos.180872
- Welham, N.J., Berbenni, V., Chapman, P.G. 2002. Increased chemisorption onto activated carbon after ball-milling. Carbon 40(13): 2307-2315. https://doi.org/10.1016/S0008-6223(02)00123-9
- Yuliusman, Sipangkar, S.P., Fatkhurrahman, M., Farouq, F.A., Putri, S.A. 2019. Utilization of coconut husk waste in the preparation of activated carbon by using chemical activators of KOH and NaOH. AIP Conference Proceedings 2255: 060026.