DOI QR코드

DOI QR Code

Study of Characterization of Activated Carbon from Coconut Shells on Various Particle Scales as Filler Agent in Composite Materials

  • DUNGANI, Rudi (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • MUNAWAR, Sasa Sofyan (Research Center for Environmental and Clear Technology, National Research and Innovation Agency) ;
  • KARLIATI, Tati (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • MALIK, Jamaludin (Research Center for Biomass and Bioproducts, National Research and Innovation Agency) ;
  • ADITIAWATI, Pingkan (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • SULISTYONO, SULISTYONO (Faculty of Forestry, Kuningan University)
  • Received : 2022.04.15
  • Accepted : 2022.06.08
  • Published : 2022.07.25

Abstract

Activated carbon (AC) derived from coconut shells (CS-AC) was obtained through pyrolysis at 700℃ and subsequently activated with H3PO4. AC was ground in a Wiley mill several times to form powder particles at particle scales of 80, 100, and 200 meshes. The characterization of the AC was studied using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT-IR), and surface area analysis (SBET). The CS-AC-200 mesh resulted in a higher percentage of mesopores and surface area. This particle size had a larger surface area with angular, irregular, and crushed shapes in the SEM view. The smaller particles had smoother surfaces, less wear, and increased curing depth and ratio of the hardness of the resin composite. Based on the characterization results of the AC, it is evident that CS-AC with a 200 mesh particle size has the potential to be used as a filler in biocomposites.

Keywords

Acknowledgement

The authors would like to thank the Ministry of Education, Culture, Research, and Technology (KEMENDIKBUDRISTEK), Indonesia, for providing Research Grant No. 2/E1/KP. PTNBH/2021. The authors would also like to thank the Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia, for providing the facilities necessary for testing.

References

  1. Abdul Khalil, H.P.S., Firoozian, P., Bakare, I.O., Akil, H.M., Noor, A.M. 2010. Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties. Materials & Design 31(7): 3419-3425. https://doi.org/10.1016/j.matdes.2010.01.044
  2. Abdul Khalil, H.P.S., Jawaid, M., Firoozian, P., Zainudin, E.S., Paridah, M.T. 2013. Dynamic mechanical properties of activated carbon-filled epoxy nanocomposite. International Journal of Polymer Analysis and Characterization 18(4): 247-256. https://doi.org/10.1080/1023666X.2013.766553
  3. Ahmed, S.J. 2018. Effect of particle size on mechanical properties of the recycling compact disks reinforced epoxy. Engineering and Technology Journal 36(6): 641-645. https://doi.org/10.30684/etj.36.6A.7
  4. Alamolhoda, S., Heshmati-Manesh, S., Ataie, A., Badiei, A. 2009. Effect of AlCl3 addition in processing of TiAl-Al2O3 nano-composite via mechanical alloying. Advanced Materials Research 264-265: 626-630. https://doi.org/10.4028/www.scientific.net/AMR.264-265.626
  5. Anisuzzaman, S.M., Collin, G.J., Wan Daud, W.M.A.B., Krishnaiah, D., Yee, H.S. 2015. Preparation and characterization of activated carbon from Typha orientalis leaves. International Journal of Industrial Chemistry 6(1): 9-21. https://doi.org/10.1007/s40090-014-0027-3
  6. Baheti, V., Naeem, S., Militky, J., Okrasa, M., Tomkova, B. 2015. Optimized preparation of activated carbon nanoparticles from acrylic fibrous wastes. Fibers and Polymers 16(10): 2193-2201. https://doi.org/10.1007/s12221-015-5364-0
  7. Baklanova, O.N., Plaksin, G.V., Drozdov, V.A., Duplyakin, V.K., Chesnokov, N.V., Kuznetsov, B.N. 2003. Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin. Carbon 41(9): 1793-1800. https://doi.org/10.1016/S0008-6223(03)00149-0
  8. BaniHani, S., AL-Oqla, F.M., Mutawe, S. 2021. Mechanical performance investigation of lignocellulosic coconut and pomegranate/LDPE biocomposite green materials. Journal of the Mechanical Behavior of Materials 30(1): 249-256. https://doi.org/10.1515/jmbm-2021-0026
  9. Bergna, D., Varila, T., Romar, H., Lassi, U. 2018. Comparison of the properties of activated carbons produced in one-stage and two-stage processes. Journal of Carbon Research 4(3): 41. https://doi.org/10.3390/c4030041
  10. Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Bjornbom, E., Minkova, V., Goranova, M. 2006. Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Processing Technology 87(10): 899-905. https://doi.org/10.1016/j.fuproc.2006.06.005
  11. Cagnon, B., Py, X., Guillot, A., Stoeckli, F., Chambat, G. 2009. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresource Technology 100(1): 292-298. https://doi.org/10.1016/j.biortech.2008.06.009
  12. Dorado, F., Sanchez, P., Alcazar-Ruiz, A., Sanchez-Silva, L. 2020. Fast pyrolysis as an alternative to the valorization of olive mill wastes. Journal of the Science of Food and Agriculture 101(7): 2650-2658.
  13. Dwiyaniti, M., Barruna, A.G.E., Naufal, R.M., Subiyanto, I., Setiabudy, R., Hudaya, C. 2020. Extremely high surface area of activated carbon originated from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering 909(1): 012018. https://doi.org/10.1088/1757-899X/909/1/012018
  14. Ediati, R., Mulyati, T.A., Mukminin, A., Sulistiono, D.O., Khoiroh, N., Fansuri, H., Prasetyoko, D. 2020. Nanoporous carbon prepared with MOF-5 as a template and activated using KOH for hydrogen storage. Jurnal Kimia Valensi 6(1): 20-31. https://doi.org/10.15408/jkv.v6i1.13621
  15. El-Hendawy, A.A., Alexander, A.J., Andrews, R.J., Forrest, G. 2008. Effects of activation schemes on porous, surface and thermal properties of activated carbon obtained cotton stalks. Journal of Analytical and Applied Pyrolysis 82(2): 272-278. https://doi.org/10.1016/j.jaap.2008.04.006
  16. Faridul Hasan, K.M., Horvath, P.G., Koczan, Z., Alpar, T. 2021. Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites. Scientific Reports 11(1): 3618. https://doi.org/10.1038/s41598-021-83140-0
  17. Firoozian, P., Bhat, I.U.H., Abdul Khalil, H.P.S., Noor, A.M., Akil, H.M., Bhat, A.H. 2011. High surface area activated carbon prepared from agricultural biomass: Empty fruit bunch (EFB), bamboo stem and coconut shells by chemical activation with H3PO4. Materials Technology 26(5): 222-228.
  18. Gale, M., Nguyen, T., Moreno, M., Gilliard-AbdulAziz, K.L. 2021. Physiochemical properties of biochar and activated carbon from biomass residue: Influence of process conditions to adsorbent properties. ACS Omega 6(15): 10224-10233. https://doi.org/10.1021/acsomega.1c00530
  19. Hamamoto, Y., Alam, K.C.A., Saha, B.B., Koyama, S., Akisawa, A., Kashiwagi, T. 2006. Study on adsorption refrigeration cycle utilizing activated carbon fibers. Part 1. Adsorption characteristics. International Journal of Refrigeration 29(2): 305-314. https://doi.org/10.1016/j.ijrefrig.2005.04.008
  20. Hendrawan, Y., Sajidah, N., Umam, C., Fauzy, M.R., Wibisono, Y., Hawa, L.C. 2019. Effect of carbonization temperature variations and activator agent types on activated carbon characteristics of Sengon wood waste (Paraserianthes falcataria (L.) Nielsen). IOP Conference Series: Earth and Environmental Science 239: 012006. https://doi.org/10.1088/1755-1315/239/1/012006
  21. Hesas, R.H., Arami-Niya, A., Wan Daud, W.M.A., Sahu, J.N. 2013. Preparation and characterization of activated carbon from apple waste by microwave-assisted phosphoric acid activation: Application in methylene blue adsorption. BioResources 8(2): 2950-2966.
  22. Hwang, H., Choi, J.W. 2018. Preparation of nanoporous activated carbon with sulfuric acid lignin and its application as a biosorbent. Journal of the Korean Wood Science and Technology 46(1): 17-28. https://doi.org/10.5658/WOOD.2018.46.1.17
  23. Ismail, A., Sudrajat, H., Jumbianti, D. 2010. Activated carbon from durian seed by H3PO4 activation: Preparation and pore structure characterization. Indonesian Journal of Chemistry 10(1): 36-40. https://doi.org/10.22146/ijc.21495
  24. Jagtoyen, M., Derbyshire, F. 1998. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36(7-8): 1085-1097. https://doi.org/10.1016/S0008-6223(98)00082-7
  25. Jawaid, M., Abdul Khalil, H.P.S. 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers 86(1): 1-18. https://doi.org/10.1016/j.carbpol.2011.04.043
  26. Jung, M.W., Ahn, K.H., Lee, Y., Kim, K.P., Rhee, J.S., Park, J.T., Paeng, K.J. 2001. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchemical Journal 70(2): 123-131. https://doi.org/10.1016/S0026-265X(01)00109-6
  27. Ko, T.L., Phyo, S.W., Ni, K.T. 2018. Effectiveness of prepared corn husk activated carbon on the abatement of sodium chloride content in fish sauce. Universal Journal of Agricultural Research 6(2): 91-97. https://doi.org/10.13189/ujar.2018.060206
  28. Kundie, F., Azhari, C.H., Muchtar, A., Ahmad, Z.A. 2018. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. Journal of Physical Science 29(1): 141-165. https://doi.org/10.21315/jps2018.29.1.10
  29. Kwon, S.C., Adachi, T., Araki, W., Yamaji, A. 2008. Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites. Composites Part B: Engineering 39(4): 740-746. https://doi.org/10.1016/j.compositesb.2007.02.030
  30. Lee, H., Kim, S., Park, M.J. 2021. Specific surface area characteristic analysis of porous carbon prepared from lignin-polyacrylonitrile copolymer by activation conditions. Journal of the Korean Wood Science and Technology 49(4): 299-314. https://doi.org/10.5658/WOOD.2021.49.4.299
  31. Lee, H.M., Kim, K.W., Park, Y.K., An, K.H., Park, S.J., Kim, B.J. 2019. Activated carbons from thermoplastic precursors and their energy storage applications. Nanomaterials 9(6): 896. https://doi.org/10.3390/nano9060896
  32. Liu, H., Su, Y., Liu, C., Zhou, A., Chu, X., Liu, S., Xing, X., Tang, E. 2021. Practical and sustainable modification method on activated carbon to improve the decolorization process in the acetaminophen pharmaceutical industry. ACS Omega 6(8): 5451-5462. https://doi.org/10.1021/acsomega.0c05637
  33. Lua, A.C., Yang, T. 2005. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum condition. Journal of Colloid and Interface Science 290(2): 505-513. https://doi.org/10.1016/j.jcis.2005.04.063
  34. Lutfi, M., Hanafi, Susilo, B., Prasetyo, J., Sandra, Prajogo, U. 2021. Characteristics of activated carbon from coconut shell (Cocos nucifera) through chemical activation process. IOP Conference Series: Earth and Environmental Science 733(1): 012134. https://doi.org/10.1088/1755-1315/733/1/012134
  35. Maghami, S., Shahrooz, M., Mehrabani-Zeinabad, A., Zornoza, B., Sadeghi, M. 2020. Characterization of the polymer/particle interphase in composite materials by molecular probing. Polymer 205: 122792. https://doi.org/10.1016/j.polymer.2020.122792
  36. Maulina, S., Handika, G., Irvan, Iswanto, A.H. 2020. Quality comparison of activated carbon produced from oil palm fronds by chemical activation using sodium carbonate versus sodium chloride. Journal of the Korean Wood Science and Technology 48(4): 503-512. https://doi.org/10.5658/WOOD.2020.48.4.503
  37. Molina-Sabio, M., Rodriguez-Reinoso, F. 2004. Role of chemical activation in the development of carbon porosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 241(1-3): 15-25. https://doi.org/10.1016/j.colsurfa.2004.04.007
  38. Muller, B.R. 2010. Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon. Carbon 48(12): 3607-3615. https://doi.org/10.1016/j.carbon.2010.06.011
  39. Naihi, H., Baini, R., Yakub, I. 2021. Oil palm biomass-based activated carbons for the removal of cadmium: A review. AIMS Materials Science 8(3): 453-468. https://doi.org/10.3934/matersci.2021028
  40. Nazem, M.A., Zare, M.H., Shirazian, S. 2020. Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes. RSC Advances 10(3): 1463-1475. https://doi.org/10.1039/c9ra07409k
  41. Nezbedova, E., Krcma, F., Majer, Z., Hutar, P. 2016. Effect of particles size on mechanical properties of polypropylene particulate composites. International Journal of Structural Integrity 7(5): 690-699. https://doi.org/10.1108/IJSI-09-2015-0030
  42. Nosonovsky, M., Bhushan, B. 2009. Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1893): 1511-1539. https://doi.org/10.1098/rsta.2009.0008
  43. Olivares-Marin, M., Fernandez-Gonzalez, C., MaciasGarcia, A., Gomez-Serrano, V. 2007. Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy Fuels 21(5): 2942-2949. https://doi.org/10.1021/ef060652u
  44. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3: 10. https://doi.org/10.1186/1754-6834-3-10
  45. Park, S.H., Jang, J.H., Wistara, N.J., Hidayat, W., Lee, M., Febrianto, F. 2018. Anatomical and physical properties of Indonesian bamboos carbonized at different temperatures. Journal of the Korean Wood Science and Technology 46(6): 656-669. https://doi.org/10.5658/WOOD.2018.46.6.656
  46. Prachayawarakorn, J., Khunsumled, S., Thongpin, C., Kositchaiyong, A., Sombatsompop, N. 2008. Effects of silane and MAPE coupling agents on the properties and interfacial adhesion of wood-filled PVC/LDPE blend. Journal of Applied Polymer Science 108(6): 3523-3530. https://doi.org/10.1002/app.27973
  47. Qi, Y., Huang, Y.X., Ma, H.X., Yu, W.J., Kim, N.H., Zhang, Y.H. 2019. Influence of a novel mold inhibitor on mechanical properties and water repellency of bamboo fiber-based composites. Journal of the Korean Wood Science and Technology 47(3): 336-343. https://doi.org/10.5658/WOOD.2019.47.3.336
  48. Rahman, M.M., Ara, M.G., Alim, M.A., Uddin, M.S., Najda, A., Albadrani, G.M., Sayed, A.A., Mousa, S.A., Abdel-Daim, M.M. 2021. Mesoporous carbon: A versatile material for scientific applications. International Journal of Molecular Sciences 22(9): 4498. https://doi.org/10.3390/ijms22094498
  49. Rahmawati, F., Ridassepri, A.F., Chairunnisa, Wijayanta, A.T., Nakabayashi, K., Miyawaki, J., Miyazaki, T. 2021. Carbon from bagasse activated with water vapor and its adsorption performance for methylene blue. Applied Sciences 11(2): 678. https://doi.org/10.3390/app11020678
  50. Ramirez, A.P., Giraldo, S., Ulloa, M., Florez, E., Acelas, N.Y. 2017. Production and characterization of activated carbon from wood wastes. Journal of Physics: Conference Series 935: 012012. https://doi.org/10.1088/1742-6596/935/1/012012
  51. Ruiz, V., Blanco, C., Granda, M., Menendez, R., Santamaria, R. 2007. Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. Journal of Applied Electrochemistry 37(6): 717-721. https://doi.org/10.1007/s10800-007-9305-5
  52. Ruiz, V., Blanco, C., Santamaria, R., Ramos-Fernandez, J.M., Martinez-Escandell, M., Sepulveda-Escribano, A., Rodriguez-Reinoso, F. 2009. An activated carbon monolith as an electrode material for supercapacitors. Carbon 47(1): 195-200. https://doi.org/10.1016/j.carbon.2008.09.048
  53. Saputro, E.A., Wulan, V.D.R., Winata, B.Y., Yogaswara, R.R., Erliyanti, N.K. 2020. Process of activated carbon form coconut shells through chemical activation. Natural Science: Journal of Science and Technology 9(1): 23-28.
  54. Shalygina, T.A., Rudenko, M.S., Nemtsev, I.V., Parfenov, V.A., Voronina, S.Y., Simonov-Emelyanov, I.D., Borisova, P.E. 2021. Influence of the filler particles' surface morphology on the polyurethane matrix's structure formation in the composite. Polymers 13(22): 3864. https://doi.org/10.3390/polym13223864
  55. Sherif El-Eskandarany, M., Al-Hazza, A., Al-Hajji, L.A., Ali, N., Al-Duweesh, A.A., Banyan, M., Al-Ajmi, F. 2021. Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite. Nanomaterials 11(10): 2484. https://doi.org/10.3390/nano11102484
  56. Thithai, V., Choi, J.W. 2020. Physicochemical properties of activated carbon produced from corn stover by chemical activation under various catalysts and temperatures. Forest Bioenergy 30(2): 8-16. https://doi.org/10.37581/KFB.2020.12.30.2.8
  57. Tiwari, A.P., Mukhiya, T., Muthurasu, A., Chhetri, K., Lee, M., Dahal, B., Lohani, P.C., Kim, H.Y. 2021. A review of electrospun carbon nanofiber-based negative electrode materials for supercapacitors. Electrochem 2(2): 236-250. https://doi.org/10.3390/electrochem2020017
  58. Tsujimoto, A., Barkmeier, W.W., Fischer, N.G., Nojiri, K., Nagura, Y., Takamizawa, T., Latta, M.A., Miazaki, M. 2018. Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors. Japanese Dental Science Review 54(2): 76-87. https://doi.org/10.1016/j.jdsr.2017.11.002
  59. Wang, X., Zhou, X., Chen, W., Chen, M., Liu, C. 2019. Enhancement of the electrochemical properties of commercial coconut shell-based activated carbon by H2O dielectric barrier discharge plasma. Royal Society Open Science 6(2): 180872. https://doi.org/10.1098/rsos.180872
  60. Welham, N.J., Berbenni, V., Chapman, P.G. 2002. Increased chemisorption onto activated carbon after ball-milling. Carbon 40(13): 2307-2315. https://doi.org/10.1016/S0008-6223(02)00123-9
  61. Yuliusman, Sipangkar, S.P., Fatkhurrahman, M., Farouq, F.A., Putri, S.A. 2019. Utilization of coconut husk waste in the preparation of activated carbon by using chemical activators of KOH and NaOH. AIP Conference Proceedings 2255: 060026.