DOI QR코드

DOI QR Code

COLOCALIZATION OF GENERALIZED LOCAL HOMOLOGY MODULES

  • Received : 2021.07.20
  • Accepted : 2022.02.04
  • Published : 2022.07.31

Abstract

Let R be a commutative Noetherian ring and I an ideal of R. In this paper, we study colocalization of generalized local homology modules. We intend to establish a dual case of local-global principle for the finiteness of generalized local cohomology modules. Let M be a finitely generated R-module and N a representable R-module. We introduce the notions of the representation dimension rI(M, N) and artinianness dimension aI(M, N) of M, N with respect to I by rI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not representable} and aI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not artinian} and we show that aI(M, N) = rI(M, N) = inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)} ≥ inf{aIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)}. Also, in the case where R is semi-local and N a semi discrete linearly compact R-module such that N/∩t>0ItN is artinian we prove that inf{i : HIi(M, N) is not minimax}=inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)\Max(R)}.

Keywords

Acknowledgement

The author thanks the referee for his/her careful reading and many helpful suggestions on this paper.

References

  1. N. T. Cuong and T. T. Nam, On the co-localization, co-support and co-associated primes of local homology modules, Vietnam J. Math. 29 (2001), no. 4, 359-368.
  2. N. T. Cuong and T. T. Nam, A local homology theory for linearly compact modules, J. Algebra 319 (2008), no. 11, 4712-4737. https://doi.org/10.1016/j.jalgebra.2007.11.030
  3. Y. N. Do, T. M. Nguyen, and N. T. Tran, Some finiteness results for co-associated primes of generalized local homology modules and applications, J. Korean Math. Soc. 57 (2020), no. 5, 1061-1078. https://doi.org/10.4134/JKMS.j180792
  4. G. Faltings, Der Endlichkeitssatz in der lokalen Kohomologie, Math. Ann. 255 (1981), no. 1, 45-56. https://doi.org/10.1007/BF01450555
  5. J. Herzog, Komplexe, Auosungen und dualitat in der localen Algebra, Habilitationschrift Univ. Regensburg, 1970.
  6. C. U. Jensen, Les foncteurs derives de lim et leurs applications en theorie des modules, Lecture Notes in Mathematics, Vol. 254, Springer-Verlag, Berlin, 1972.
  7. I. G. Macdonald, Duality over complete local rings, Topology 1 (1962), 213-235. https://doi.org/10.1016/0040-9383(62)90104-0
  8. I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), pp. 23-43. Academic Press, London, 1973.
  9. L. Melkersson and P. Schenzel, The co-localization of an Artinian module, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 1, 121-131. https://doi.org/10.1017/S0013091500006258
  10. T. T. Nam, Co-support and coartinian modules, Algebra Colloq. 15 (2008), no. 1, 83-96. https://doi.org/10.1142/S1005386708000084
  11. T. T. Nam, A finiteness result for co-associated and associated primes of generalized local homology and cohomology modules, Comm. Algebra 37 (2009), no. 5, 1748-1757. https://doi.org/10.1080/00927870802216396
  12. T. T. Nam, Left-derived functors of the generalized I-adic completion and generalized local homology, Comm. Algebra 38 (2010), no. 2, 440-453. https://doi.org/10.1080/00927870802578043
  13. T. T. Nam and N. D. Minh, Some properties of generalized local homology and cohomology modules, Bull. Korean Math. Soc. 50 (2013), no. 6, 2013-2020. https://doi.org/10.4134/bkms.2013.50.6.2013
  14. S. Rezaei, Colocalization of local homology modules, Bull. Korean Math. Soc. 57 (2020), no. 1, 167-177. https://doi.org/10.4134/BKMS.b190133
  15. R. N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 103, 269-273. https://doi.org/10.1093/qmath/26.1.269
  16. S. Yassemi, Coassociated primes, Comm. Algebra 23 (1995), no. 4, 1473-1498. https://doi.org/10.1080/00927879508825288
  17. D. N. Yen and T. T. Nam, Generalized local homology and duality, Internat. J. Algebra Comput. 29 (2019), no. 3, 581-601. https://doi.org/10.1142/S0218196719500152
  18. H. Zoschinger, Koatomare Moduln, Math. Z. 170 (1980), no. 3, 221-232. https://doi.org/10.1007/BF01214862
  19. H. Zoschinger, Minimax-moduln, J. Algebra 102 (1986), no. 1, 1-32. https://doi.org/10.1016/0021-8693(86)90125-0
  20. H. Zoschinger, Uber koassoziierte Primideale, Math. Scand. 63 (1988), no. 2, 196-211. https://doi.org/10.7146/math.scand.a-12233