DOI QR코드

DOI QR Code

Hierarchical carrier-based discontinuous PWM strategy for hybrid-switch current source rectifier

  • Wang, Weiqi (College of Electrical Engineering and Automation, Shandong University of Science and Technology) ;
  • Meng, Xiangjian (College of Electrical Engineering and Automation, Shandong University of Science and Technology) ;
  • Liang, Xi (PipeChina North Pipeline Company)
  • Received : 2021.10.04
  • Accepted : 2022.02.27
  • Published : 2022.06.20

Abstract

This paper proposes a hybrid-switch three-phase current source rectifier (CSR) solution, which employs only one silicon carbide (SiC) switch and six traditional silicon (Si) switches. The corresponding hierarchical discontinuous pulse width modulation (HDPWM) strategy for the proposed CSR is also presented, which uses two parallel carrier-based discontinuous PWM branches to perform differentiated modulation operations on Si and SiC devices to endow the Si switches with zero current switching capability and conveniently make full use of the high-speed and low-loss advantages of SiC devices. Consequently, the proposed hybrid-switch CSR with HDPWM can even work as a full SiC device-switching converter with relatively lower costs, thus addressing the critical needs of efficiency promotion of CSR applications. MATLAB simulations and experimental verifications were conducted to verify the performance of the proposed CSR solution.

Keywords

References

  1. Guo, X., Yang, Y., Wang, X.: Optimal space vector modulation of current-source converter for DC-link current ripple reduction. IEEE Trans. Industr. Electron. 66(3), 1671-1680 (2019) https://doi.org/10.1109/tie.2018.2835396
  2. Guo, B., Wang, F., Aeloiza, E.: A novel three-phase current source rectifier with delta-type input connection to reduce the device conduction loss. IEEE Trans. Power Electron. 31(2), 1074-1084 (2016) https://doi.org/10.1109/TPEL.2015.2420571
  3. Liu, Y., Tang, S., Wang, H., Ning, G., Xiong, W.: Independent power decoupling method using minimum switch devices for single-phase current source converters. J. Power Electron. 21, 1383-1394 (2021) https://doi.org/10.1007/s43236-021-00271-3
  4. Xu, F., Guo, B., Xu, Z., Tolbert, L.M., Wang, F., Blalock, B.J.: Paralleled three-phase current-source rectifiers for high-efficiency power supply applications. IEEE Trans. Ind. Appl. 51(3), 2388-2397 (2015) https://doi.org/10.1109/TIA.2014.2385936
  5. Monteiro V., Exposto B., Pinto J. G., Sepulveda M. J., Melendez A. A. N., Afonso J. L.: Three-phase three-level current-source converter for EVs fast battery charging systems. In: IEEE International Conference on Industrial Technology, pp. 1401-1406 (2015). https://doi.org/10.1109/ICIT.2015.7125293
  6. Xu, Y., Wang, Z., Liu, P., Chen, Y., He, J.: Soft-switching current-source rectifier based onboard charging system for electric vehicles. IEEE Trans. Ind. Appl. 57(5), 5086-5098 (2021) https://doi.org/10.1109/TIA.2021.3093251
  7. Tu, H., Feng, H., Srdic, S., Lukic, S.: Extreme fast charging of electric vehicles: a technology overview. IEEE Trans. Transp. Electrific. 5(4), 861-878 (2019) https://doi.org/10.1109/TTE.2019.2958709
  8. Wei, Q., Wu, B., Xu, D., Zargari, N.R.: A medium-frequency transformer-based wind energy conversion system used for current-source converter-based offshore wind farm. IEEE Trans. Power Electron. 32(1), 248-259 (2017) https://doi.org/10.1109/TPEL.2016.2524635
  9. Popat, M., Wu, B., Liu, F., Zargari, N.R.: Coordinated control of cascaded current-source converter based offshore wind farm. IEEE Trans. Sustain. Energy. 3, 557-565 (2012) https://doi.org/10.1109/TSTE.2012.2191986
  10. Kim, K.Y., Bak, Y., Lee, K.B.: Predictive current control for indirect matrix converter with reduced current ripple. J. Power Electron. 20, 443-454 (2020) https://doi.org/10.1007/s43236-020-00048-0
  11. Wei, Q., Xing, L., Xu, D., Wu, B., Zargari, N.R.: Modulation schemes for medium-voltage PWM current source converter-based drives: an overview. IEEE J. Emerg. Select. Top. Power Electron. 7(2), 1152-1161 (2019) https://doi.org/10.1109/jestpe.2018.2831695
  12. Bierhof M. H., Fuchs F. W.: Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation. In: IEEE Annual Power Electronics Specialists Conference, pp. 2836-2842 (2004). https://doi.org/10.1109/PESC.2004.1355283
  13. Monteiro V., Pinto J. G., Exposto B., Afonso J.L.: Comprehensive comparison of a current-source and a voltage-source converter for three-phase EV fast battery chargers. In: International Conference on Compatibility and Power Electronics, pp. 173-178 (2015). https://doi.org/10.1109/CPE.2015.7231068
  14. Lu D., Wang X., Blaabjerg F.: Investigation on the AC/DC interactions in voltage-source rectifiers and current-source rectifiers. In: IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1-6 (2018). https://doi.org/10.1109/COMPEL.2018.8460150
  15. Jiao Q., Hosseini R., Cuzner R. M.: A comparison between silicon carbide based current source rectifier and voltage source rectifier for applications in community DC microgrid. In: IEEE International Conference on Renewable Energy Research and Applications (ICRERA), pp. 544-549 (2016). https://doi.org/10.1109/ICRERA.2016.7884394
  16. Liu, P., Wang, Z., Xu, Y., Xiao, H., Li, Y.W.: Optimal overlaptime distribution of space vector modulation for current-source rectifier. IEEE Trans. Industr. Electron. 68(6), 4586-4597 (2021) https://doi.org/10.1109/TIE.2020.2989714
  17. Cheng, R., He, Y., Lei, C., Wang, Y., Liu, J.: Research on realizing space vector equivalent modulation output by dual carrier modulation of current source inverter. IEEE Trans. Power Electron. 36(7), 8494-8505 (2021) https://doi.org/10.1109/TPEL.2020.3046492
  18. Friedli, T., Round, S.D., Hassler, D., Kolar, J.W.: Design and performance of a 200-kHz all-SiC JFET current dc-link back-to-back converter. IEEE Trans. Ind. Appl. 45(5), 1868-1878 (2009) https://doi.org/10.1109/tia.2009.2027538
  19. Narasimhan S., Anurag A., Bhattacharya S.: Comparative study of a 3.3 kV SiC-based voltage and current source inverter for high-speed motor drive applications. In: IEEE Energy Conversion Congress and Exposition-Asia (ECCE-Asia), pp. 2211-2217 (2021). https://doi.org/10.1109/ECCE-Asia49820.2021.9479066
  20. Wang, J., Xun, Y., Liu, X., Yu, S., Jiang, N.: Soft switching circuit of high-frequency active neutral point clamped inverter based on SiC/Si hybrid device. J. Power Electron. 21, 71-84 (2021) https://doi.org/10.1007/s43236-020-00166-9
  21. Scaini, V., Ma, T.: High-current DC choppers in the metals industry. IEEE Ind. Appl. Mag. 8(2), 26-33 (2002) https://doi.org/10.1109/2943.985678
  22. Wallace, I., Bendre, A., Nord, J.P., Venkataramanan, G.: A unity-power-factor three-phase PWM SCR rectifier for high-power applications in the metal industry. IEEE Trans. Ind. Appl. 38(4), 898-908 (2002) https://doi.org/10.1109/TIA.2002.800587
  23. Lopes, L.A.C., Naguib, M.F.: Space-vector-modulated hybrid bidirectional current source converter. IEEE Trans. Power Electron. 25(4), 1055-1067 (2010) https://doi.org/10.1109/TPEL.2009.2034264
  24. Naguib M.F., Lopes L.A.C.: Soft-switching of a hybrid bi-directional Current Source Converter. In: IEEE Power Electronics Specialists Conference, pp. 4177-4183 (2008). https://doi.org/10.1109/PESC.2008.4592610
  25. Naguib M. F., Lopes L. A. C.: Analysis of a hybrid current source converter with bi-directional power fow capability. In: IEEE Canada Electrical Power Conference, pp. 128-133 (2007). https://doi.org/10.1109/EPC.2007.4520318
  26. Jiang L., Lu Z., Chen H., Wu X.: A novel hybrid 3-phase PWM current source rectifier using SCRs and IGBTs. In: IEEE Energy Conversion Congress and Exposition, pp. 1235-1239 (2009). https://doi.org/10.1109/ECCE.2009.5316417
  27. Jiang L., Cai Z., Lu Z., Chen H.: Research on the improved 3-phase PWM Current Source Rectifier with hybrid switch. In: IEEE International Power Electronics and Motion Control Conference, pp. 1626-1629 (2009). https://doi.org/10.1109/IPEMC.2009.5157650
  28. Wang, W., Gao, F., Yang, Y., Blaabjerg, F.: Operation and modulation of H7 current-source inverter with hybrid SiC and Si semi-conductor switches. IEEE J. Emerg. Select. Top. Power Electron. 6(1), 387-399 (2018) https://doi.org/10.1109/jestpe.2017.2732825
  29. Wang, W., Gao, F., Yang, Y., Blaabjerg, F.: An eight-switch five-level current source inverter. IEEE Trans. Power Electron. 34(9), 8389-8404 (2019) https://doi.org/10.1109/tpel.2018.2884846
  30. Zmood, D.N., Holmes, D.G.: Improved voltage regulation for current-source inverters. IEEE Trans. Ind. Appl. 37(4), 1028-1036 (2001) https://doi.org/10.1109/28.936393
  31. Stojadinovic, N., Dankovic, D., Manic, I., Prijic, A., Davidovic, V., Djoric-Veljkovic, S., Golubovic, S., Prijic, Z.: Threshold voltage instabilities in p-channel power VDMOSFETs under pulsed NBT stress. Microelectron. Reliab. 50(9-11), 1278-1282 (2010) https://doi.org/10.1016/j.microrel.2010.07.122
  32. Dankovic, D., Mitrovic, N., Prijic, Z., Stojadinovic, N.D.: Modeling of NBTS efects in P-channel power VDMOSFETs. IEEE Trans. Device Mater. Reliab. 20(1), 204-213 (2020) https://doi.org/10.1109/tdmr.2020.2974131
  33. Peng, C., Lei, Z., Gao, R., Zhang, Z., Chen, Y., En, Y., Huang, Y.: Investigation of negative bias temperature instability effect in partially depleted SOI pMOSFET. IEEE Access. 8, 99037-99046 (2020) https://doi.org/10.1109/access.2020.2997463
  34. Homes D.G., Lipo T.A.: Modulation of Current Source Inverters. in Pulse width modulation for power converters: principles and practice. IEEE Press. 337-348(2003). https://doi.org/10.1109/9780470546284.ch7
  35. Li, Y.W., Wu, B., Xu, D., Zargari, N.R.: Space vector sequence investigation and synchronization methods for active front-end rectifiers in high-power current-source drives. IEEE Trans. Indust. Electron. 55(3), 1022-1034 (2008) https://doi.org/10.1109/TIE.2008.917073