DOI QR코드

DOI QR Code

Nonlinear output-feedback speed servo systems through active damping injection and position filtering approaches without current feedback

  • Lee, Deog‑Ho (Graduate School of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Seok‑Kyoon (Department of Creative Convergence Engineering, Hanbat National University) ;
  • Lee, Kyo‑Beum (Graduate School of Electrical and Computer Engineering, Ajou University)
  • Received : 2022.01.17
  • Accepted : 2022.04.17
  • Published : 2022.07.20

Abstract

This paper proposes a novel current feedback-free speed regulation method for servo systems subject to system parameter and load uncertainties. The proposed solution has two features. First, the position measurement from the rotary encoder constitutes the speed and acceleration estimates for control loops through a position filter with nonlinearly-structured design parameters and without dependence on the system parameters. Second, the proposed controller only requires nominal system parameter information, and stabilizes both the speed and acceleration loops using only position measurements by injecting active damping terms, which leads to pole-zero cancellation. A prototype servo system was built using a 500 W brushless DC-motor-based dynamo. The prototype experimentally validates the effectiveness of the proposed solution in terms of speed tracking and regulation tasks.

Keywords

Acknowledgement

This research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. NRF-2021R1C1C1004380), and was supported in part by Korea Electric Power Corporation. (Grant number: R21XO01-113).

References

  1. Han, B., Lee, J.-S., Bak, Y., Lee, K.-B.: Six-step operation strategy for direct self-control method of interior permanent magnet synchronous motors based on torque angle. J. Power Electron. 21, 1352-1364 (2021) https://doi.org/10.1007/s43236-021-00281-1
  2. Lee, H.-W., Cho, D.-H., Lee, K.-B.: Rotor position estimation over entire speed range of interior permanent magnet synchronous motors. J. Power Electron. 21, 693-702 (2021) https://doi.org/10.1007/s43236-021-00217-9
  3. Wu, C., Jiao, Y., Nian, H., Blaabjerg, F.: A simplified stator frequency and power control method of DFIG-DC system without stator voltage and current sensors. IEEE Trans. Power Electron. 35, 5562-5566 (2020) https://doi.org/10.1109/tpel.2019.2953677
  4. Jo, H.-R., Kim, Y.-J., Lee, K.-B.: LCL-filter design based on modulation index for grid-connected three-level hybrid ANPC inverters. J. Electr. Eng. Technol. 16, 1517-1525 (2021) https://doi.org/10.1007/s42835-021-00703-x
  5. Cho, D.-H., Lee, K.-B.: Sensorless direct torque control for interior permanent-magnet synchronous motors using square-wave-type stator flux injection at low-speed regions. J. Electr. Eng. Technol. 17, 329-337 (2022) https://doi.org/10.1007/s42835-021-00866-7
  6. Kim, S.-K., Ahn, C.K.: Active-damping speed tracking technique for permanent magnet synchronous motors with transient performance boosting mechanism. IEEE Trans. Ind. Inf. 1, 1-9 (2022). https://doi.org/10.1109/TII.2021.3104337
  7. Park, J.K., Lee, J.-H., Kim, S.-K., Ahn, C.K.: Output-feedback speed-tracking control without current feedback for BLDCMs based on active-damping and invariant surface approach. IEEE Trans. Circuits Syst. 68, 2528-2532 (2021) https://doi.org/10.1109/TCSII.2021.3049168
  8. Kazmierkowski, M.P., Krishnan, R., Blaabjerg, F.: Control in Power Electronics-Selected Problems. Academic Press, Cambridge (2002)
  9. Andeescu, G.-D., Pitic, C., Blaabjerg, F., Boldea, I.: Combined flux observer with signal injection enhancement for wide speed range sensorless direct torque control of IPMSM drives. IEEE Trans. Energy Convers. 23, 393-402 (2008) https://doi.org/10.1109/TEC.2007.914386
  10. L. Tang, L. Zhong, M. Rahman, Y. Hu., A novel direct torque control for interior permanent-magnet synchronous machine drive with low ripple in torque and flux - a speed-senseroless approach, IEEE Trans. Ind. Appl. 39, 1748-1756, 2003. https://doi.org/10.1109/TIA.2003.818981
  11. Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics, 2nd edn. Springer-Verlag, New York (2001)
  12. Olalla, C., Leyva, R., Queinnec, I., Maksimovic, D.: Robust gain-scheduled control of switched-mode DC-DC converters. IEEE Trans. Power Electron. 27, 3006-3019 (2012) https://doi.org/10.1109/TPEL.2011.2178271
  13. Sul, S.-K.: Control of electric machine drive systems, vol. 88. Wiley, Hoboken (2011)
  14. Tian, L., Li, Z., Wang, Z., Sun, X., Guo, T., Zhang, H.: Speed-sensorless control of induction motors based on adaptive EKF. J. Power Electron. 21, 1823-1833 (2021) https://doi.org/10.1007/s43236-021-00325-6
  15. Liu, B., Xu, J., Xu, W., Xia, W.: An improved adaptive cubature H-infinity filter for state of charge estimation of lithium-ion battery. J. Power Electron. 21, 1520-1529 (2021) https://doi.org/10.1007/s43236-021-00294-w
  16. Li, J., Wang, Q., Xiao, L., Liu, Z., Wu, Q.: An accurate and robust adaptive notch filter-based phase-locked loop. J. Power Electron. 20, 1514-1525 (2020) https://doi.org/10.1007/s43236-020-00127-2
  17. Jie, H., Xu, H., Zheng, Y., Xin, X., Zheng, G.: Permanent magnet synchronous motor control algorithm based on stability margin and lyapunov stability analysis. J. Power Electron. 19, 1505-1514 (2019) https://doi.org/10.6113/jpe.2019.19.6.1505
  18. Kim, S.-K., Lee, J.-S., Lee, K.-B.: Self-tuning adaptive speed controller for permanent magnet synchronous motor. IEEE Trans. Power Electron. 32, 1493-1506 (2017) https://doi.org/10.1109/TPEL.2016.2543222
  19. Kim, S.-K.: Robust adaptive speed regulator with self-tuning law for surfaced-mounted permanent magnet synchronous motor. Control Eng. Pract. 61, 55-71 (2017) https://doi.org/10.1016/j.conengprac.2017.01.014
  20. El-Sousy, F.F.M., Abuhasel, K.A.: Nonlinear robust optimal control via adaptive dynamic programming of permanent-magnet linear synchronous motor Drive for uncertain two-axis motion control system. IEEE Trans. Ind. Appl. 56, 1940-1952 (2020) https://doi.org/10.1109/tia.2019.2961637
  21. Kim, S.-K., Kim, Y., Ahn, C.K.: Energy-shaping speed controller with time-varying damping injection for permanent-magnet synchronous motors. IEEE Trans. Circuits Syst. II Express Briefs 68, 381-385 (2021) https://doi.org/10.1109/TCSII.2020.2992260
  22. Kim, S.-K., Ahn, C.K.: Position regulator with variable cut-off frequency mechanism for hybrid-type stepper motors. IEEE Trans Circuits Syst. I Regul. Pap. 67, 3533-3540 (2020) https://doi.org/10.1109/TCSI.2020.2988044
  23. Errouissi, R., Ouhrouche, M., Chen, W.-H., Trzynadlowski, A.M.: Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator. IEEE Trans. Ind. Electron. 59, 3078-3088 (2012) https://doi.org/10.1109/TIE.2011.2167109
  24. Son, Y.I., Kim, I.H., Choi, D.S., Shim, H.: Robust cascade control of electric motor drives using dual reduced-order PI observer. IEEE Trans. Ind. Electron. 62, 3672-3682 (2015) https://doi.org/10.1109/TIE.2014.2374571
  25. Corradini, M.L., Ippoliti, G., Longhi, S., Orlando, G.: A quasi-sliding mode approach for robust control and speed estimation of PM synchronous motors. IEEE Trans. Ind. Electron. 59, 1096-1104 (2012) https://doi.org/10.1109/TIE.2011.2158035
  26. Geyer, T., Papafotieu, G., Morari, M.: Model predictive direct torque control-part I: concept, algorithm and analysis. IEEE Trans. Ind. Electron. 56, 1894-1905 (2009) https://doi.org/10.1109/TIE.2008.2007030
  27. Ahmed, A.A., Koh, B.K., Lee, Y.I.: A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors. IEEE Trans. Ind. Inf. 14, 1334-1346 (2018) https://doi.org/10.1109/tii.2017.2758393
  28. Tao, T., Zhao, W., Du, Y., Cheng, Y., Zhu, J.: Simplified fault-tolerant model predictive control for a five-phase permanent-magnet motor with reduced computation burden. IEEE Trans. Power Electron. 35, 3850-3858 (2020) https://doi.org/10.1109/tpel.2019.2934578
  29. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)