DOI QR코드

DOI QR Code

SNIPE Mission for Space Weather Research

우주날씨 관측을 위한 큐브위성 도요샛 임무

  • Received : 2022.04.12
  • Accepted : 2022.05.08
  • Published : 2022.05.31

Abstract

The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

도요샛(Small Scale magNetospheric and Ionospheric Plasma Experiment, SNIPE)의 과학임무는 전리권 상층부 소규모 플라즈마 구조의 공간적 시간적 변화를 관찰하는 것이다. 이를 위해 4개의 6U 큐브위성(10 kg)이 고도 약 500 km 극궤도로 발사될 예정이며, 상호 위성 간 거리는 편대 비행 알고리즘에 의해 수 10 km에서 수 1,000 km 이상으로 제어된다. 운영 초기에는 4기의 위성이 같은 궤도 평면에 위치하는 종대비행을 하다가 경도상에서 나란히 배치되는 횡대비행으로 전환하여 4기의 서로 다른 지점에서 공간적인 변화를 관측하게 된다. 도요샛에는 입자 검출기, 랑뮈어 탐침, 자력계로 구성된 우주날씨 관측 장비가 각 위성에 탑재된다. 모든 관측기는 10 Hz 이상의 높은 시간 분해능을 가지며 큐브위성에 최적화 설계되었다. 이 외에도 이리디듐 통신 모듈은 지자기 폭풍이 발생할 때 작동 모드를 변경하기 위한 명령을 업로드할 수 있는 기회를 제공한다. 도요샛은 극 지역 플라즈마 밀도 급상승, 필드 정렬 전류, 고에너지 전자의 국소 영역 침투, 적도 및 중위도 플라즈마 거품의 발생 및 시공간적 진화에 대한 관찰을 수행할 예정이며, 이를 통해 태양풍이 우주날씨에 어떠한 영향을 미치는지 탐구하게 된다. 도요샛은 2023년 상반기 러시아 소유즈-2에 의해 카자흐스탄 바이코누르에서 발사될 예정이다.

Keywords

Acknowledgement

본 연구는 한국천문연구원의 주요 사업인 "근지구 우주환경 관측위성 탑재체 개발"과 "차세대 우주환경 관측 네트워크 구축 및 운영"의 지원을 받아 수행되었다.

References

  1. Chen FF, Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, NY, 1984).
  2. Seon KI, Han W, Lee YW, Lee HM, Kim MB, et al., Space missions for astronomy and astrophysics in Korea: past, present, and future, J. Korean Phys. Soc. 78, 942-971 (2021). https://doi.org/10.1007/s40042-021-00166-3
  3. Escoubet CP, Fehringer M, Goldstein M, Introduction: the cluster mission, Ann. Geophys. 19, 1197-1200 (2001). https://doi.org/10.5194/angeo-19-1197-2001
  4. Mauk BH, Fox NJ, Kanekal SG, Kessel RL, Sibeck DG, et al., Science objectives and rationale for the radiation belt storm probes mission, in The Van Allen Probes Mission, eds. Fox N, Burch JL (Springer, Boston, MA, 2012).
  5. Burch JL, Moore TE, Torbert RB, Giles BL, Magnetospheric multiscale overview and science objectives, Space Sci. Rev. 199, 5-21 (2016). https://doi.org/10.1007/s11214-015-0164-9
  6. Friis-Christensen E, Luhr H, Knudsen D, Haagmans R, Swarm - an earth observation mission investigating geospace, Adv. Space Res. 41, 210-216 (2008). https://doi.org/10.1016/j.asr.2006.10.008
  7. Puig-Suari J, Turner C, Ahlgren W, Development of the standard CubeSat deployer and a CubeSat class PicoSatellite, 2001 IEEE Aerospace Conference Proceedings, Big Sky, MT, 10-17 Mar 2001.
  8. Nanosats database, viewed 2022 June 1, available from: https://www.nanosats.eu
  9. Kulu E, Small launchers - 2021 industry survey and market analysis, in 72nd International Astronautical Congress (IAC 2021), Dubai, 25-29 Oct 2021.
  10. Crusan J, Galica C, NASA's CubeSat launch initiative: enabling broad access to space, Acta Astronaut. 157, 51-60 (2019). https://doi.org/10.1016/j.actaastro.2018.08.048
  11. Johnson AT, Shumko M, Griffith B, Klumpar DM, Sample J, et al., The FIREBIRD-II CubeSat mission: focused investigations of relativistic electron burst intensity, range, and dynamics, Rev. Sci. Instrum. 91, 034503 (2020). https://doi.org/10.1063/1.5137905
  12. Moore CS, Caspi A, Woods TN, Chamberlin PC, Dennis BR, et al., The instruments and capabilities of the miniature X-ray solar spectrometer (MinXSS) CubeSats, Sol. Phys. 293, 21 (2018). https://doi.org/10.1007/s11207-018-1243-3
  13. Crowley G, Fish C, Pilinksi M, Stromberg E, Huang C, et al., Scintillation observations and response of the ionoshere to electrodynamics (SORTIE), in 30th Annual AIAA/USU Conference on Small Satellites, Logan, UT, 6-11 Aug 2016.
  14. Angelopoulos V, Tsai E, Bingley L, Shaffer C, Turner DL, et al., The ELFIN mission, Space Sci. Rev. 216, 103 (2020). https://doi.org/10.1007/s11214-020-00721-7
  15. Spann J, Swenson C, Durao O, The scintillation prediction observations research task (SPORT): an international science mission using a CubeSat, in 31st Annual AIAA/USU Conference on Small Satellites, Logan, UT, 5-11 Aug 2017.
  16. Kepko L, Santos L, Clagett C, Azimi B, Chai D, et al., Dellingr: reliability lessons learned from on-orbit, in 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug 2018.
  17. Lee JJ, Kim KC, Lee JG, Short-duration electron precipitation studied by test particle simulation, J. Astron. Space Sci. 32, 317-325 (2015). https://doi.org/10.5140/JASS.2015.32.4.317
  18. Lee JJ, Parks GK, Lee E, Tsurutani BT, Hwang J, et al., Anisotropic pitch angle distribution of ~100 keV microburst electrons in the loss cone: measurements from STSAT-1, Ann. Geophys. 30, 1567-1573 (2012). https://doi.org/10.5194/angeo-30-1567-2012
  19. Park S, Kim KH, Kil H, Jee G, Lee DH, et al., The source of the steep plasma density gradient in middle latitudes during the 11-12 April 2001 storm, J. Geophys. Res. 117 (2012). https://doi.org/10.1029/2011JA017349
  20. Hosokawa K, Kashimoto T, Suzuki S, Shiokawa K, Otsuka Y, et al., Motion of polar cap patches: a statistical study with all-sky airglow imager at Resolute Bay, Canada, J. Geophys. Res. 114 (2009). https://doi.org/10.1029/2008JA014020
  21. Xiong C, Stolle C, Luhr H, Park J, Fejer BG, et al., Scale analysis of equatorial plasma irregularities derived from swarm constellation, Earth Planets Space. 68, 121 (2016). https://doi.org/10.1186/s40623-016-0502-5
  22. Park J, Luhr H, Rauberg J, Global characteristics of Pc1 magnetic pulsations during solar cycle 23 deduced from CHAMP data, Ann. Geophys. 31, 1507-1520 (2013). https://doi.org/10.5194/angeo-31-1507-2013
  23. Riot VJ, Simms LM, Carter D, Lessons learned using iridium to communicate with a CubeSat in low Earth orbit, J. Small Satell. 10, 995-1006 (2021).