DOI QR코드

DOI QR Code

MRAS-based current estimator for DC-DC converters considering time-variant load impedance

  • Singh, Shubham Kumar (Department of Electrical and Electronic Engineering, Birla Institute of Technology) ;
  • Matwankar, Chetan S. (Department of Electrical and Electronic Engineering, Birla Institute of Technology) ;
  • Jee, Manan (Department of Electrical and Electronic Engineering, RTC Institute of Technology) ;
  • Alam, Aftab (Department of Electrical and Electronic Engineering, Birla Institute of Technology)
  • 투고 : 2021.04.13
  • 심사 : 2021.11.23
  • 발행 : 2022.02.20

초록

The integration of the multiple renewable energy sources (RESs) into a common grid requires a DC bus to be connected with the AC bus of the utility grid using an interlinking converter between the two buses. The DC bus is formed by multiple DC-DC converters fed by RESs. To maintain a fixed DC bus voltage, all of the converters are controlled in a closed loop. The number of DC-DC converters along with the number of corresponding voltage and current sensors becomes staggeringly high for a large number of distributed energy resources (DERs) based systems. Therefore, this paper embarks on state estimation-based closed-loop control of DC-DC converters to significantly reduce the number of sensors. Here, the state variable of the DC current is estimated using a model reference adaptive system (MRAS) for eliminating the current sensors from the hardware design. This estimated state, along with the measured state (capacitor voltage), is used in the state feedback-based closed-loop control of the DC-DC converter. A hardware prototype of a solar photovoltaic (SPV) fed 5 kW boost converter was built and controlled using the proposed current estimator. The experimental results establish the accuracy of the performance parameters of the proposed current estimator.

키워드

과제정보

This project is funded by Science and Engineering Research Board, DST, Govt. of India with sanctioned order number ECR/2018/002037.

참고문헌

  1. Kang, C., Chen, Z., Zhang, N., Gomis-Bellmunt, O., Barnes, M., Yan, J., Hu, W., Sun, K.: Guest editorial for the special section on enabling very high penetration renewable energy integration into future power systems. IEEE Trans Power Syst 33(3), 3223-3226 (2018) https://doi.org/10.1109/tpwrs.2018.2819738
  2. Kroposki, B., Johnson, B., Zhang, Y., Gevorgian, V., Denholm, P., Hodge, B., Hannegan, B.: Achieving a 100electric power systems with extremely high levels of variable renewable energy. IEEE Power Energy Mag 15(2), 61-73 (2017) https://doi.org/10.1109/MPE.2016.2637122
  3. Rabiul Islam, M., Mahfuz-Ur-Rahman, A.M., Muttaqi, K.M., Sutanto, D.: State-of-the-art of the mediumvoltage power converter technologies for grid integration of solar photovoltaic power plants. IEEE Trans Energy Convers 34(1), 372-384 (2019) https://doi.org/10.1109/TEC.2018.2878885
  4. Seyed Mahmoodieh, M.E., Deihimi, A.: Batteryintegrated multiinput step-up converter for sustainable hybrid energy supply. IET Power Electron 12(4), 777-789 (2019) https://doi.org/10.1049/iet-pel.2018.5782
  5. Jain, S., Agarwal, V.: An integrated hybrid power supply for distributed generation applications fed by nonconventional energy sources. IEEE Trans Energy Convers 23(2), 622-631 (2008) https://doi.org/10.1109/TEC.2008.918631
  6. Patel, H., Agarwal, V.: A single-stage single-phase transformerless doubly grounded grid-connected pv interface. IEEE Trans Energy Convers 24(1), 93-101 (2009) https://doi.org/10.1109/TEC.2008.2006551
  7. Liu, Q., Caldognetto, T., Buso, S.: Flexible control of interlinking converters for dc microgrids coupled to smart ac power systems. IEEE Trans Industr Electron 66(5), 3477-3485 (2019) https://doi.org/10.1109/TIE.2018.2856210
  8. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galvan, E., PortilloGuisado, R.C., Prats, M.A.M., Leon, J.I., Moreno-Alfonso, N.: Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Industr Electron 53(4), 1002-1016 (2006) https://doi.org/10.1109/TIE.2006.878356
  9. Bragard, M., Soltau, N., Thomas, S., De Doncker, R.W.: The balance of renewable sources and user demands in grids: power electronics for modular battery energy storage systems. IEEE Trans Power Electron 25(12), 3049-3056 (2010) https://doi.org/10.1109/TPEL.2010.2085455
  10. Moslehi, K., Kumar, R.: A reliability perspective of the smart grid. IEEE Trans Smart Grid 1(1), 57-64 (2010) https://doi.org/10.1109/TSG.2010.2046346
  11. Monteiro, V., Pinto, J.G., Afonso, J.L.: Experimental validation of a three-port integrated topology to interface electric vehicles and renewables with the electrical grid. IEEE Trans Industr Inf 14(6), 2364-2374 (2018) https://doi.org/10.1109/tii.2018.2818174
  12. Zeng, J., Qiao, W., Qu, L., Jiao, Y.: An isolated multiport dc-dc converter for simultaneous power management of multiple different renewable energy sources. IEEE J Emerg Sel Topics Power Electron 2(1), 70-78 (2014) https://doi.org/10.1109/JESTPE.2013.2293331
  13. Liu, X., Wang, P., Loh, P.C.: A hybrid ac/dc microgrid and its coordination control. IEEE Trans Smart Grid 2(2), 278-286 (2011) https://doi.org/10.1109/TSG.2011.2116162
  14. Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, M.A.M.: Family of multiport bidirectional dc-dc converters. IEE Proc Electr Power Appl 153(3), 451-458 (2006) https://doi.org/10.1049/ip-epa:20050362
  15. Sinha, M., Poon, J., Johnson, B.B., Rodriguez, M., Dhople, S.V.: Decentralized interleaving of parallel connected buck converters. IEEE Trans Power Electron 34(5), 4993-5006 (2019) https://doi.org/10.1109/tpel.2018.2868756
  16. Lin, B.-R.: Dc-dc converter implementation with wide output voltage operation. J Power Electron 20(2), 376-387 (2020) https://doi.org/10.1007/s43236-020-00037-3
  17. Lu, X., Guerrero, J.M., Sun, K., Vasquez, J.C., Teodorescu, R., Huang, L.: Hierarchical control of parallel ac-dc converter interfaces for hybrid microgrids. IEEE Trans Smart Grid 5(2), 683-692 (2014) https://doi.org/10.1109/TSG.2013.2272327
  18. Ebrahimi, S., Amiri, N., Huang, Y., Wang, L., Jatskevich, J.: Average-value modeling of diode rectifier systems under asymmetrical operation and internal faults. IEEE Trans Energy Convers 33(4), 1895-1906 (2018) https://doi.org/10.1109/TEC.2018.2832652
  19. Maksimovic, D., Stankovic, A.M., Thottuvelil, V.J., Verghese, G.C.: Modeling and simulation of power electronic converters. Proc IEEE 89(6), 898-912 (2001) https://doi.org/10.1109/5.931486
  20. Davoudi, A., Jatskevich, J., Chapman, P.L., Bidram, A.: Multiresolution modeling of power electronics circuits using modelorder reduction techniques. IEEE Trans Circuits Syst I Regul Pap 60(3), 810-823 (2013) https://doi.org/10.1109/TCSI.2012.2215745
  21. Yang, F., Ge, H., Yang, J., Wu, H.: Dual-input grid connected photovoltaic inverter with two integrated dc-dc converters and reduced conversion stages. IEEE Trans Energy Convers 34(1), 292-301 (2019) https://doi.org/10.1109/TEC.2018.2878893
  22. Qian, Z., Abdel-Rahman, O., Al-Atrash, H., Batarseh, I.: Modeling and control of three-port dc/dc converter interface for satellite applications. IEEE Trans Power Electron 25(3), 637-649 (2010) https://doi.org/10.1109/TPEL.2009.2033926
  23. Wu, C., Chen, Y.: Inductor current measurement strategy for high-precision output current control. IEEE J Emerg Sel Topics in Power Electron 5(3), 1263-1271 (2017) https://doi.org/10.1109/JESTPE.2017.2681899
  24. Walker, G.R., Sernia, P.C.: Cascaded dc-dc converter connection of photovoltaic modules. IEEE Trans Power Electron 19(4), 1130-1139 (2004) https://doi.org/10.1109/TPEL.2004.830090
  25. Mishra, S.K., Nayak, K.K., Rana, M.S., Dharmarajan, V.: Switched-boost action based multiport converter. IEEE Trans Ind Appl 55(1), 964-975 (2019) https://doi.org/10.1109/TIA.2018.2869098
  26. Corti, M., Tironi, E., Ubezio, G.: Dc networks including multiport dc/dc converters: fault analysis. IEEE Trans Ind Appl 52(5), 3655-3662 (2016) https://doi.org/10.1109/TIA.2016.2572045
  27. Dragi'cevi'c, T., Guerrero, J.M., Vasquez, J.C., Skrlec, D.: Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability. IEEE Trans Power Electron 29(2), 695-706 (2014) https://doi.org/10.1109/TPEL.2013.2257857
  28. D'iaz, N.L., Luna, A.C., Vasquez, J.C., Guerrero, J.M.: Centralized control architecture for coordination of distributed renewable generation and energy storage in islanded ac microgrids. IEEE Trans Power Electron 32(7), 5202-5213 (2017) https://doi.org/10.1109/TPEL.2016.2606653
  29. Zhang, C., Guerrero, J.M., Vasquez, J.C., Coelho, E.A.A.: Control architecture for parallel-connected inverters in uninterruptible power systems. IEEE Trans Power Electron 31(7), 5176-5188 (2016) https://doi.org/10.1109/TPEL.2015.2481480
  30. Wang, Z., Li, S., Yang, J., Li, Q.: Current sensorless fnite-time control for buck converters with time-varying disturbances. Control Eng Pract 77, 127-137 (2018) https://doi.org/10.1016/j.conengprac.2018.05.014
  31. Kim, S.-K., Ahn, C.K.: Proportional-derivative voltage control with active damping for dc/dc boost converters via current sensorless approach. IEEE Trans Circuits Syst II 68(2), 737-741 (2021) https://doi.org/10.1109/TCSII.2020.3008432
  32. Wang, J., Zhang, C., Li, S., Yang, J., Li, Q.: Finite-time output feedback control for pwm-based dc-dc buck power converters of current sensorless mode. IEEE Trans Control Syst Technol 25(4), 1359-1371 (2017) https://doi.org/10.1109/TCST.2016.2613966
  33. Roy, J., Ayyanar, R.: Sensor-less current sharing over wide operating range for extended-duty-ratio boost converter. IEEE Trans Power Electron 32(11), 8763-8777 (2017) https://doi.org/10.1109/TPEL.2016.2640319
  34. Cho, H., Yoo, S.J., Kwak, S.: State observer based sensor less control using lyapunov's method for boost converters. IET Power Electron 8(1), 11-19 (2015) https://doi.org/10.1049/iet-pel.2013.0920
  35. Pan, L., Zhang, J., Wang, K., Wang, B., Pang, Y., Zhu, L.: Direct power control without current sensors for nine-switch inverters. J Power Electron 18(1), 1-10 (2018) https://doi.org/10.6113/JPE.2018.18.1.1
  36. Errouissi, R., Al-Durra, A., Muyeen, S.M., El Aroudi, A.: Robust feedback-linearisation control of a boost converter feeding a gridtied inverter for pv applications. IET Power Electronics 11(3), 557-565 (2018) https://doi.org/10.1049/iet-pel.2017.0084
  37. Leyva, R., Martinez-Salamero, L., Valderrama-Blavi, H., Maixe, J., Giral, R., Guinjoan, F.: Linear state feedback control of a boost converter for large-signal stability. IEEE Trans Circuits Syst I 48(4), 418-424 (2001) https://doi.org/10.1109/81.917979
  38. Linares Flores, J., Barahona Avalos, J.L., Bautista Espinosa, C.A.: Passivity-based controller and online algebraic estimation of the load parameter of the dc-to-dc power converter cuk type. IEEE Latin Am Trans 9(1), 784-791 (2011) https://doi.org/10.1109/TLA.2011.5876420
  39. Gensior, A., Weber, J., Rudolph, J., Guldner, H.: Algebraic parameter identification and asymptotic estimation of the load of a boost converter. IEEE Trans Industr Electron 55(9), 3352-3360 (2008) https://doi.org/10.1109/TIE.2008.928102
  40. Chen, C., Li, L., Zhang, Q., Tong, Q., Liu, K., Lyu, D., Min, R.: Online inductor parameters identification by small signal injection for sensorless predictive current controlled boost converter. IEEE Trans Industr Inf 13(4), 1554-1564 (2017) https://doi.org/10.1109/TII.2016.2647079
  41. Castro, C.L., Braga, A.P.: Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data. IEEE Trans Neural Netw Learning Syst 24(6), 888-899 (2013) https://doi.org/10.1109/TNNLS.2013.2246188