DOI QR코드

DOI QR Code

Magnetic integrated LCL filter design for a 2.5 kW three-phase grid-connected inverter with double closed-loop control

  • Chen, Feng (Electric Power Research Institute of Guangdong Power Grid Co., Ltd) ;
  • Jiang, Shiqi (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Jin, Dianheng (Shenzhen Kstar Technology Co., Ltd) ;
  • Mei, Zhaozhao (Shenzhen Kstar Technology Co., Ltd)
  • Received : 2021.05.14
  • Accepted : 2021.11.28
  • Published : 2022.02.20

Abstract

Output filter is an essential part of a grid-connected inverter used for improving the quality of a grid-injected current. The use of LCL filters in power converters in microgrid applications is more preferred compared with L or LC filters because of their better harmonic attenuation capability. However, LCL filter still occupies a main part of the weight and volume of the whole system. Thus, more progress can be further developed with this consideration. In this paper, based on a 2.5 kW three-phase voltage source inverter, a magnetic-integrated LCL filter is designed by sharing an EIE-type core to reduce weight and size significantly. With the magnetic coupling influence taken into consideration, more effective design principles of the filter are discussed according to theoretical analysis and mathematical modeling. Meanwhile, a double closed-loop control strategy is utilized to eliminate the resonance introduced by the LCL filter and stabilize the system. Simulation and practical experiments are conducted with a detailed comparison between the discrete and integrated LCL filters, which can verify the feasibility and validity of the proposed method.

Keywords

Acknowledgement

This work was supported by the Science and Technology Project of State Grid Heilongjiang Electric Power Company Limited (SGHLDK00DWJS2100088).

References

  1. Du, E., Zhang, N., Hodge, B., Wang, Q., Kang, C., Kroposki, B., Xia, Q.: The role of concentrating solar power toward high renewable energy penetrated power systems. IEEE Trans. Power Syst. 33(6), 6630-6641 (2018) https://doi.org/10.1109/tpwrs.2018.2834461
  2. Patel, R., Li, C., Meegahapola, L., McGrath, B., Yu, X.: Enhancing optimal automatic generation control in a multi-area power system with diverse energy resources. IEEE Trans. Power Syst. 34(5), 3465-3475 (2019) https://doi.org/10.1109/tpwrs.2019.2907614
  3. Sangwongwanich, A., Yang, Y., Blaabjerg, F.: High-performance constant power generation in grid-connected PV systems. IEEE Trans. Power Electron. 31(3), 1822-1825 (2016) https://doi.org/10.1109/TPEL.2015.2465151
  4. Villarreal-Ortiz, R.A., Hernandez-Angeles, M., Fuerte-Esquivel, C.R., Villanueva-Chavez, R.O.: Centroid PWM technique for inverter harmonics elimination. IEEE Trans. Power Deliv. 20(2), 1209-1210 (2005) https://doi.org/10.1109/TPWRD.2004.839738
  5. Albanna, A.Z., Hatziadoniu, C.J.: Harmonic Modeling of Hysteresis Inverters in Frequency Domain. IEEE Trans. Power Electron. 25(5), 1110-1114 (2010) https://doi.org/10.1109/TPEL.2009.2037500
  6. Arricibita, D., Sanchis, P., Gonzalez, R., Marroyo, L.: Impedance emulation for voltage harmonic compensation in PWM stand-alone inverters. IEEE Trans. Energy Convers. 32(4), 1335-1344 (2017) https://doi.org/10.1109/TEC.2017.2709078
  7. Kulothungan, G.S., Edpuganti, A., Rathore, A.K., Rodriguez, J., Srinivasan, D.: Hybrid SVM-SOPWM modulation of current-fed three-level inverter for high power application. IEEE Trans. Ind. Appl. 55(4), 4344-4358 (2019) https://doi.org/10.1109/tia.2019.2912967
  8. Gambhir, A., Mishra, S.K., Joshi, A.: Power frequency harmonic reduction and its redistribution for improved filter design in current-fed switched inverter. IEEE Trans. Ind. Electron. 66(6), 4319-4333 (2019) https://doi.org/10.1109/tie.2018.2860531
  9. IEEE Power and Energy Society: Recommended practice and requirements for harmonic control in electric power systems. In: IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp. 1-29. Piscataway (2014)
  10. Liu, Y., Jiang, S., Jin, D., Peng, J.: Performance comparison of Si IGBT and SiC MOSFET power devices based LCL three-phase inverter with double closed-loop control. IET Power Electron. 12(2), 322-329 (2019) https://doi.org/10.1049/iet-pel.2018.5702
  11. Huang, Q., Huang, A.Q., Yu, R., Liu, P., Yu, W.: High-efficiency and high-density single-phase dual-mode cascaded buck-boost multilevel transformerless PV inverter with gan AC switches. IEEE Trans. Power Electron. 34(8), 7474-7488 (2019) https://doi.org/10.1109/tpel.2018.2878586
  12. Qi, Y., Fang, J., Liu, J., Tang, Y.: Coordinated control for harmonic mitigation of parallel voltage-source inverters. CES Trans. Electric. Mach. Syst. 2(3), 276-283 (2018) https://doi.org/10.30941/CESTEMS.2018.00034
  13. Xin, Z., Mattavelli, P., Yao, W., Yang, Y., Blaabjerg, F., Loh, P.C.: Mitigation of grid-current distortion for LCL-filtered voltage-source inverter with inverter-current feedback control. IEEE Trans. Power Electron. 33(7), 6248-6261 (2018) https://doi.org/10.1109/tpel.2017.2740946
  14. Ko, W., Gu, J.: Impact of shunt active harmonic filter on harmonic current distortion of voltage source inverter-fed drives. IEEE Trans. Ind. Appl. 52(4), 2816-2825 (2016) https://doi.org/10.1109/TIA.2016.2552138
  15. Zhong, Q.: Harmonic droop controller to reduce the voltage harmonics of inverters. IEEE Trans. Ind. Electron. 60(3), 936-945 (2013) https://doi.org/10.1109/TIE.2012.2189542
  16. Zeng, Z., Yang, J.-Q., Chen, S.-L., Huang, J.: Fast-transient repetitive control strategy for a three-phase LCL filter-based shunt active power filter. J. Power Electron. 14(2), 392-401 (2014) https://doi.org/10.6113/JPE.2014.14.2.392
  17. Liu, Y., Jin, D., Jiang, S., Liang, W., Peng, J., Lai, C.: An active damping control method for the LLCL filter-based SiC MOS-FET grid-connected inverter in vehicle-to-grid application. IEEE Trans. Veh. Technol. 68(4), 3411-3423 (2019) https://doi.org/10.1109/tvt.2019.2899166
  18. Li, X., Fang, J., Lin, P., Tang, Y.: A common magnetic integration method for single-phase LCL filters and LLCL filters. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5595-5600 (2017)
  19. Fang, J., Li, H., Tang, Y.: A magnetic integrated LLCL filter for grid-connected voltage-source converters. IEEE Trans. Power Electron. 32(3), 1725-1730 (2017) https://doi.org/10.1109/TPEL.2016.2613578
  20. Li, X., Lin, P., Tang, Y.: Magnetic integration of LTL filter with twoLC-traps for grid-connected power converters. IEEE J. Emerg. Sel. Top. Power Electron. 6(3), 1434-1446 (2018) https://doi.org/10.1109/jestpe.2017.2764060
  21. Liu, Y., See, K., Yin, S., Simanjorang, R., Tong, C.F., Nawawi, A., Lai, J.J.: LCL filter design of a 50-kW 60-kHz SiC inverter with size and thermal considerations for aerospace applications. IEEE Trans. Ind. Electron. 64(10), 8321-8333 (2017) https://doi.org/10.1109/TIE.2017.2677338
  22. Liu, Y., See, K.Y., Tseng, K.J., Simanjorang, R., Lai, J.: Magnetic integration of three-phase LCL filter with delta-yoke composite core. IEEE Trans. Power Electron. 32(5), 3835-3843 (2017) https://doi.org/10.1109/TPEL.2016.2583489
  23. Wu, W., He, Y., Blaabjerg, F.: An LLCL power filter for single-phase grid-tied inverter. IEEE Trans. Power Electron. 27(2), 782-789 (2012) https://doi.org/10.1109/TPEL.2011.2161337
  24. Grahame, H.D.: Pulse width modulation for power converters : Principles and practice. Wiley Sons 45(1), 71-77 (2003)
  25. Nanjing New Conda Magnetic Industrial Co. LTD [EB/OL] (2021). http://www.ncd.com.cn/companyfle/10/. Accessed 26 Oct 2021
  26. Jiang, S., Liu, Y.: EMI Noise reduction for the single-phase gridconnected inverter with a modified harmonic filter design. IEEE Trans. Electromagn. Compat. 63(3), 739-751 (2021) https://doi.org/10.1109/TEMC.2020.3039243