DOI QR코드

DOI QR Code

Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies

  • Received : 2022.06.26
  • Accepted : 2022.10.05
  • Published : 2022.12.31

Abstract

Many packages for a meta-analysis of genome-wide association studies (GWAS) have been developed to discover genetic variants. Although variations across studies must be considered, there are not many currently-accessible packages that estimate between-study heterogeneity. Thus, we propose a python based application called Beta-Meta which can easily process a meta-analysis by automatically selecting between a fixed effects and a random effects model based on heterogeneity. Beta-Meta implements flexible input data manipulation to allow multiple meta-analyses of different genotype-phenotype associations in a single process. It provides a step-by-step meta-analysis of GWAS for each association in the following order: heterogeneity test, two different calculations of an effect size and a p-value based on heterogeneity, and the Benjamini-Hochberg p-value adjustment. These methods enable users to validate the results of individual studies with greater statistical power and better estimation precision. We elaborate on these and illustrate them with examples from several studies of infertility-related disorders.

Keywords

Acknowledgement

This work was supported by National IT Industry Promotion Agency (NIPA) grant funded by the Korea government (MSIT) (No. S0252-21-1001, Development of AI Precision Medical Solution (Doctor Answer 2.0)).

References

  1. Goldstein DB. Common genetic variation and human traits. N Engl J Med 2009;360:1696-1698. https://doi.org/10.1056/NEJMp0806284
  2. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019;20:467-484. https://doi.org/10.1038/s41576-019-0127-1
  3. Hu Z, Xia Y, Guo X, Dai J, Li H, Hu H, et al. A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia. Nat Genet 2011;44:183-186.
  4. Gu X, Li H, Chen X, Zhang X, Mei F, Jia M, et al. PEX10, SIRPA-SIRPG, and SOX5 gene polymorphisms are strongly associated with nonobstructive azoospermia susceptibility. J Assist Reprod Genet 2019;36:759-768. https://doi.org/10.1007/s10815-019-01417-w
  5. Zeggini E, Ioannidis JP. Meta-analysis in genome-wide association studies. Pharmacogenomics 2009;10:191-201. https://doi.org/10.2217/14622416.10.2.191
  6. Hoaglin DC. Misunderstandings about Q and 'Cochran's Q test' in meta-analysis. Stat Med 2016;35:485-495. https://doi.org/10.1002/sim.6632
  7. Lee CH, Cook S, Lee JS, Han B. Comparison of two meta-analysis methods: inverse-variance-weighted average and weighted sum of Z-scores. Genomics Inform 2016;14:173-180. https://doi.org/10.5808/GI.2016.14.4.173
  8. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26:2190-2191. https://doi.org/10.1093/bioinformatics/btq340
  9. Evangelou E, Ioannidis JP. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 2013;14:379-389. https://doi.org/10.1038/nrg3472
  10. Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 2010;86:6-22. https://doi.org/10.1016/j.ajhg.2009.11.017
  11. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 1995;57:289-300.
  12. Zhbannikov IY, Arbeev K, Ukraintseva S, Yashin AI. haploR: an R package for querying web-based annotation tools. F1000Res 2017;6:97.
  13. Lee GH, Choi YM, Hong MA, Yoon SH, Kim JJ, Hwang K, et al. Association of CDKN2B-AS and WNT4 genetic polymorphisms in Korean patients with endometriosis. Fertil Steril 2014;102:1393-1397.
  14. Uno S, Zembutsu H, Hirasawa A, Takahashi A, Kubo M, Akahane T, et al. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet 2010;42:707-710. https://doi.org/10.1038/ng.612
  15. Kim JJ, Choi YM, Hong MA, Chae SJ, Hwang K, Yoon SH, et al. FSH receptor gene p. Thr307Ala and p. Asn680Ser polymorphisms are associated with the risk of polycystic ovary syndrome. J Assist Reprod Genet 2017;34:1087-1093. https://doi.org/10.1007/s10815-017-0953-z
  16. Wan P, Meng L, Huang C, Dai B, Jin Y, Chai L, et al. Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. J Assist Reprod Genet 2021;38:2781-2789.
  17. Zou J, Wu D, Liu Y, Tan S. Association of luteinizing hormone/ choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: a meta-analysis. Gynecol Endocrinol 2019;35:81-85.
  18. Shin SJ, Lee HH, Cha SH, Kim JH, Shim SH, Choi DH, et al. Endothelial nitric oxide synthase gene polymorphisms (-786T>C, 4a4b, 894G>T) and haplotypes in Korean patients with recurrent spontaneous abortion. Eur J Obstet Gynecol Reprod Biol 2010;152:64-67. https://doi.org/10.1016/j.ejogrb.2010.05.014
  19. Zhao X, Li Q, Yu F, Lin L, Yin W, Li J, et al. Gene polymorphism associated with endothelial nitric oxide synthase (4VNTR, G894T, C786T) and unexplained recurrent spontaneous abortion risk: a meta-analysis. Medicine (Baltimore) 2019;98:e14175.
  20. Jeon YJ, Choi YS, Rah H, Kim SY, Choi DH, Cha SH, et al. Association study of microRNA polymorphisms with risk of idiopathic recurrent spontaneous abortion in Korean women. Gene 2012;494:168-173. https://doi.org/10.1016/j.gene.2011.12.026
  21. Jeon YJ, Kim SY, Rah H, Choi DH, Cha SH, Yoon TK, et al. Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with risk of spontaneously aborted fetuses. Am J Reprod Immunol 2012;68:408-417. https://doi.org/10.1111/aji.12005
  22. Sun Y, Chen M, Mao B, Cheng X, Zhang X, Xu C. Association between vascular endothelial growth factor polymorphism and recurrent pregnancy loss: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2017;211:169-176. https://doi.org/10.1016/j.ejogrb.2017.03.003
  23. Li L, Donghong L, Shuguang W, Hongbo Z, Jing Z, Shengbin L. Polymorphisms in the vascular endothelial growth factor gene associated with recurrent spontaneous miscarriage. J Matern Fetal Neonatal Med 2013;26:686-690. https://doi.org/10.3109/14767058.2012.746305
  24. Liu Z, Lin L, Yao X, Xing J. Association between polymorphisms in the XRCC1 gene and male infertility risk: a meta-analysis. Medicine (Baltimore) 2020;99:e20008.
  25. Lv MQ, Li YX, Ge P, Yang YQ, Zhang J, Han SP, et al. Association between X-ray repair cross-complementing group 1 Arg399Gln polymorphism and male infertility: an update meta-analysis. Andrologia 2020;52:e13700.
  26. Park JH, Lee HC, Jeong YM, Chung TG, Kim HJ, Kim NK, et al. MTHFR C677T polymorphism associates with unexplained infertile male factors. J Assist Reprod Genet 2005;22:361-368. https://doi.org/10.1007/s10815-005-6795-0
  27. Shi TL, Wu Y, Li Y, Chen ZF, Ma YN, Zhang ZT, et al. The relevance of MTHFR C677T, A1298C, and MTRR A66G polymorphisms with response to male infertility in Asians: a meta-analysis. Medicine (Baltimore) 2019;98:e14283.
  28. Lee HC, Jeong YM, Lee SH, Cha KY, Song SH, Kim NK, et al. Association study of four polymorphisms in three folate-related enzyme genes with non-obstructive male infertility. Hum Reprod 2006;21:3162-3170.
  29. Chang J, Pan F, Tang Q, Wu W, Chen M, Lu C, et al. eNOS gene T786C, G894T and 4a4b polymorphisms and male infertility susceptibility: a meta-analysis. Andrologia 2017;49:e12646.
  30. Song P, Zou S, Chen T, Chen J, Wang Y, Yang J, et al. Endothelial nitric oxide synthase (eNOS) T-786C, 4a4b, and G894T polymorphisms and male infertility: study for idiopathic asthenozoospermia and meta-analysis. Biol Reprod 2015;92:38.
  31. Wu W, Lu J, Tang Q, Zhang S, Yuan B, Li J, et al. GSTM1 and GSTT1 null polymorphisms and male infertility risk: an updated meta-analysis encompassing 6934 subjects. Sci Rep 2013;3:2258.
  32. Tang M, Wang S, Wang W, Cao Q, Qin C, Liu B, et al. The glutathione-S-transferase gene polymorphisms (GSTM1 and GSTT1) and idiopathic male infertility risk: a meta-analysis. Gene 2012;511:218-223. https://doi.org/10.1016/j.gene.2012.09.054
  33. Han LJ, He XF, Ye XH. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and male infertility risk: an updated meta-analysis. Medicine (Baltimore) 2020;99:e23662.
  34. Zou S, Li Z, Wang Y, Chen T, Song P, Chen J, et al. Association study between polymorphisms of PRMT6, PEX10, SOX5, and nonobstructive azoospermia in the Han Chinese population. Biol Reprod 2014;90:96.
  35. van Rooij FJ, Qayyum R, Smith AV, Zhou Y, Trompet S, Tanaka T, et al. Genome-wide trans-ethnic meta-analysis identifies seven genetic loci influencing erythrocyte traits and a role for RBPMS in erythropoiesis. Am J Hum Genet 2017;100:51-63. https://doi.org/10.1016/j.ajhg.2016.11.016
  36. Terao C, Kawaguchi T, Dieude P, Varga J, Kuwana M, Hudson M, et al. Transethnic meta-analysis identifies GSDMA and PRDM1 as susceptibility genes to systemic sclerosis. Ann Rheum Dis 2017;76:1150-1158. https://doi.org/10.1136/annrheumdis-2016-210645
  37. Tekola-Ayele F, Zhang C, Wu J, Grantz KL, Rahman ML, Shrestha D, et al. Trans-ethnic meta-analysis of genome-wide association studies identifies maternal ITPR1 as a novel locus influencing fetal growth during sensitive periods in pregnancy. PLoS Genet 2020;16:e1008747.
  38. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012;40: D930-D934. https://doi.org/10.1093/nar/gkr917
  39. Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, et al. Quality control procedures for genome-wide association studies. Curr Protoc Hum Genet 2011;Chapter 1:Unit1 19.
  40. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions, version 6.3 (updated February 2022). London: Cochrane, 2022. Accessed 2022 Jul 26. Available from: http://www.training.cochrane.org/handbook.
  41. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-560.  https://doi.org/10.1136/bmj.327.7414.557