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Introduction 

Genome-wide association studies (GWAS) of diseases and traits have increasingly been 
used to identify single nucleotide polymorphisms (SNPs). Although GWAS have tested 
hundreds of thousands of genetic variants to discover genotype-phenotype associations, 
they have a few limitations. Variants discovered in individual GWAS explain only a small 
proportion of heritability, and their genetic effect sizes are mostly small and require a sub-
stantial sample size to identify [1,2]. Moreover, some studies examining the same geno-
type-phenotype association yield inconsistent results such as variant effect sizes in oppo-
site directions [3,4]. To overcome these limitations, a meta-analysis of GWAS has been 
used extensively since it can improve the statistical power by combining data across any 
number of independent studies and can clarify heterogeneity among their results [5]. 

As meta-analysis has become a popular tool for aggregating data from multiple sources, 
several studies have revised analytical strategies from previous well-known studies [6-9]. 
A weighted average of the effect sizes can be calculated under a fixed effects model or a 
random effects model, but the fixed effects model can lead to false-positive results when 
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there is heterogeneity between studies [9,10]. Even though it is 
important to use the appropriate approaches for meta-analyses, 
there are few available tools that provide a step-by-step calculation, 
running both the fixed effects model and the random effects mod-
el [10]. Therefore, for those who find it difficult to conduct a me-
ta-analysis, we have developed a flexible data processing tool that 
adopts the revised methods assessing heterogeneity between stud-
ies and using the Benjamini-Hochberg (BH) procedure to calcu-
late adjusted p-values [11]. In addition to these methods, Be-
ta-Meta has several convenient features such as an automatic selec-
tion between the two models depending upon the quantified het-
erogeneity. It also manifests flexibility and convenience in process-
ing data as it can perform a varying number of meta-analyses si-

multaneously and operate strand flipping automatically when 
there is a discrepancy in the direction of the strand orientation be-
tween studies. Also, we have attached haploR package [12] which 
detects alternative SNPs by estimating their correlations. 

Since it is crucial to increase statistical power in order to identify 
significant variants, especially in studies with small sample sizes, 
we demonstrate Beta-Meta using studies of diseases related to in-
fertility, most of which have relatively small sample sizes [4,13-34]. 

Methods 

Fig. 1 depicts the four steps of Beta-Meta: input data manipulation, 
heterogeneity test, weighted effect size calculation under the fixed 

Fig. 1. Overview of Beta-Meta pipeline.
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and random effects models, and output data of summary statistics 
after the BH adjustment. 

Linkage disequilibrium calculation 
Meta-analysis can improve signal detection when we account for 
not only between-study heterogeneity but also differences in link-
age disequilibrium (LD) between ethnicities [35]; in addition, 
several trans-ethnic meta-analyses have identified unknown sus-
ceptibility genes [35-37]. As it is important to consider differences 
in LD, we utilize the haploR package [12] that queries HaploReg 
database [38] and returns alternative SNPs in LD. By calculating 
pairwise metrics of LD in each continental population, LD struc-
tures between ethnicities can be discovered and hence alternative 
SNPs can be used for the following meta-analysis [38]. This step is 
optional; users may skip this step and start a meta-analysis when 
the summary statistics of their target SNPs of interest are already 
obtained. 

Input data manipulation 
After surveying the studies of interest (infertility-related disorders 
in this paper), we created a table for input data in Excel (Supple-
mentary Table 1). Beta-Meta can read an Excel file for input data, 
which must include phenotypes, SNPs, effect and non-effect al-
leles, effect sizes, and p-values. For the effect sizes and their levels 
of significance, either the beta coefficient and its standard error or 
the odds ratio (OR) and its confidence interval can be used. As 

Beta-Meta calculates SNP-phenotype associations separately, it is 
acceptable to include as many phenotypes as desired in the single 
input file. 

When the OR and its confidence interval are used for input 
data, they are converted into the beta coefficient and the standard 
error, respectively. The normalized effect of the ithstudy, βi is the 
logarithm of OR, where k is the number of individual studies, each 
of which is designed to examine the same SNP-phenotype associ-
ation [9]. 

The standard error si is calculated from the 95% confidence inter-
val of the OR.  

When synthesizing datasets for meta-analysis, it is important to 
ensure uniformity in allele labels and hence in the direction of the 
effect because alleles are typically called on only one of the two 
DNA strands in sequencing experiments [39]. Beta-Meta auto-
matically corrects the direction of the effect by using one of the 
datasets with the lowest p-value as a reference and aligning the 
other datasets to it. For example, when the effect and the non-ef-
fect allele are inverted between the independent studies (e.g., 
rs13405782 and rs1801133 as shown in Table 1), this can be re-
solved automatically by changing the sign of the normalized effect.

 

Table 1. Example of input data: summary statistics of the individual GWAS of infertility

Phenotype SNP EA NEA OR (95% CI) p-value PMID
Endometriosis rs10965235 C A 1.489 1.30E-4 25154675

(1.213–1.827)
Endometriosis rs10965235 C A 1.44 5.57E-12 20601957

(1.3–1.59)
Polycystic ovary syndrome rs13405728 A G 1.55 1.00E-03 34403018

(1.39–1.72)
Polycystic ovary syndrome rs13405728 G A 0.723 1.00E-03 30182769

(0.686–0.762)
Folic acid metabolism-related male infertility rs1801133 T C 1.33 1.40E-02 16247718

(1.06–1.66)
Folic acid metabolism-related male infertility rs1801133 C T 0.7 1.00E-05 30813130

(0.66–0.75)
Non-obstructive azoospermia rs10842262 G C 1.335 2.30E-03 24648396

(1.1081–1.6083)
Non-obstructive azoospermia rs10842262 G C 1.23 0.001 30863997

(1.16–1.3)

GWAS, genome-wide association studies; SNP, single nucleotide polymorphism; EA, effect allele; NEA, non-effect allele; OR, odds ratio; CI, confidence 
interval.
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Heterogeneity analysis 
In meta-analysis, datasets generated by multiple groups by differ-
ent methods are likely to have any kind of variability, also known 
as heterogeneity. Heterogeneity indicates that the observed effects 
in datasets are more different from each other than would be ex-
pected by random error alone [40]. To check the heterogeneity, 
the weighted average of the effect size β̂ is calculated first as [9]:  

Then, we calculate the Cochran’s Q statistic, Q and Higgins’ het-
erogeneity metric, I2 for the heterogeneity test [6].  

I2 quantifies the degree of heterogeneity as a value between 0 
and 100% [41]. As a greater value of I2 indicates stronger heteroge-
neity, the weighted average of the effect sizes is calculated, based 
on I2, using two different models: the fixed effects model and the 
random effects model. A threshold value of I2 for the model selec-
tion is set to 50%. 

Calculation of weighted average of the effect sizes based on I2 

For 0≤ I2<50, we use the fixed effects model to calculate the 
weighted average of the effect sizes and its standard error [7].  

For 50≤ I2≤100, we use the random effects model [7,9].  

The weights for the random effect model wi
R are as follows [7,9]:  

Integrated p-value and the BH adjustment
The integrated p-value through meta-analysis can be obtained as 
follows [7]: 

where Φ is the cumulative distribution function of the standard 
normal distribution, and integrated Z-score, Z [7] is  

Finally, to reduce the false-positive results, the integrated p-values 
are corrected by the BH adjustment method. When p(1), p(2), • , 
p(m) are the p-values of the SNPs sorted in ascending order (p(1) ≤ 
p(2) ≤ •  ≤ p(m)), the adjusted p-values obtained through the BH 
procedure are as follows [11]:  

where m is the number of different SNPs related to a specific phe-
notype, and j is the ranking in the ascending order of the p-values 
of SNPs related to the specific phenotype. 

Results 

Using Beta-Meta, we performed a sample test of integrating multi-
ple studies of infertility and obtained a table containing all of the 
above calculated summary statistics values (Supplementary Table 
2) and a forest plot of combined effect sizes (Supplementary Fig. 
1). The conventional genome-wide significance p-value threshold 
of 5 × 10–8 was used to identify significant SNP markers. Of the to-
tal 26 SNP-phenotype associations from the 23 studies we investi-
gated (Supplementary Table 1), the only significant association was 
the one between rs10965232 and endometriosis from Uno et al. 
[14] with a p-value of 5.57 × 10–12 (Table 1). After performing the 
meta-analysis, we found three more significantly associated SNPs: 
rs13405728, rs1801133, and rs10842262 as displayed in Table 2. 

In order to check the accuracy of Beta-Meta, we compared the 
meta-analysis results of Beta-Meta (Supplementary Table 2) with 
those of METAL [8] (Supplementary Table 3), which is one of 
the most widely used meta-analysis packages but does not have a 
random effects option. We could confirm the accuracy of Be-
ta-Meta calculation with the result that the significantly associated 
SNPs identified by METAL and those found by Beta-Meta were 
the same. At the same time, Beta-Meta features convenience as it 
calculates the summary statistics accurately by automatically se-
lecting the appropriate model based on heterogeneity. 
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Discussion 

Beta-Meta application can be utilized as an effortless meta-anal-
ysis tool for researchers with limited statistics backgrounds. It al-
lows them to easily manipulate and analyze their own datasets on a 
personal computer as it is written in python and can be run with 
an executable file in MS Windows. 

As shown above, Beta-Meta increases the power to detect weak 
signals, identifying significant variants which was not significantly 
associated in single studies. Furthermore, it calculates the effect 
sizes and the p-values accurately by selecting the appropriate mod-
el based on heterogeneity and applying the BH adjustment. These 
can contribute to time-efficient management of the recent growth 
in aggregated GWAS especially for those involved in the field of 
genetic testing. Because it is difficult to obtain a large number of 
datasets and validate genotype-phenotype associations experi-
mentally within a limited budget, meta-analysis is still in demand 
to discover SNP markers for genetic testing. 

In conclusion, the application presented here provides a conven-
tional and yet convenient way to conduct a meta-analysis of 
GWAS. Beta-Meta is expected to facilitate various research proj-
ects, such as the discovery of novel SNP markers, the calculation 
of polygenic risk scores, and the acquisition of biological insights 
into complex diseases and traits. 
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